Apollo 8

Mentionné sur The Other Side

Apollo-8-patch

Apollo 8 est la seconde mission habitée du programme spatial Apollo. Elle est la première à avoir transporté des hommes au-delà de l’orbite terrestre, ainsi que la première mission habitée lancée par la fusée spatiale Saturn V.

Après s’être placé en orbite autour de la Terre, le vaisseau a effectué un transfert pour l’orbite lunaire : c’était la première fois qu’un homme voyait directement la “face cachée” de la Lune. Cette mission a été également l’occasion de la première célébration de Noël dans l’espace, à l’occasion de laquelle l’équipage a effectué une lecture du Livre de la Genèse qui a été diffusée à la télévision.

Le décollage a eu lieu le depuis le Launch Complex 39A (LC39A) du Kennedy Space Center en Floride. L’amerrissage s’est déroulé sans problèmes le .

Le module de commande est exposé au Museum of Science and Industry de Chicago (Illinois).

La mission Apollo 8 comptait trois membres d’équipage :

  • Frank Borman (commandant, 2 missions spatiales) : a participé à la mission Gemini 7 ;
  • James Lovell (pilote du module de commande, 3 missions spatiales) : a pris part aux missions Gemini 7, Gemini 12 et Apollo 13 ;
  • William Anders (pilote du module lunaire, 1 mission spatiale).

Néanmoins, un équipage suppléant avait été formé, au cas où l’un des membres de l’équipage se verrait incapable d’effectuer la mission. Les trois membres suppléants étaient :

  • Neil Armstrong (commandant suppléant, 2 missions spatiales) : a pris part aux missions Gemini 8 et Apollo 11 ;
  • Buzz Aldrin (pilote du module de commande suppléant, 2 missions spatiales) : prit part aux missions Gemini 12 et Apollo 11 ;
  • Fred Haise (pilote du module lunaire suppléant, 1 mission spatiale) : a pris part à la mission Apollo 13.

Une équipe a été spécialement dédiée au soutien radio des membres d’équipage et à la planification de la mission :

  • John Bull ;
  • Vance Brand : a pris part aux missions Apollo-Soyouz, STS-5, STS-41B, STS-35 ;
  • Gerald Carr : a pris part à la mission Skylab 4 ;
  • Ken Mattingly : a pris part aux missions Apollo 16, STS-4, STS-51C ;

La direction du vol a été déléguée à trois équipes (on leur attribua une couleur : black, green, maroon), dont les directeurs étaient :

  • Cliff Charlesworth (green team) ;
  • Glynn Lunney (black team) ;
  • Milton Windler (maroon team).

Le 22 décembre 1966, la NASA a annoncé l’équipe qui allait occuper le troisième vol habité du programme Apollo : Frank Borman, Michael Collins et Bill Anders. Collins a été remplacé par son suppléant Jim Lovell en juillet 1968, après que Collins ait eu développé une hernie discale aux vertèbres cervicales qui a nécessité une opération de chirurgie. Collins a récupéré et a pris part à la mission Apollo 11.

En septembre 1967, le Manned Spacecraft Center de Houston a proposé une série de missions destinées à préparer un atterrissage lunaire habité. Sept missions ont été conservées, chacune évaluant un certain nombre de composants et de tâches spécifiques :

  • A : Module de commande/service (CSM) inhabité ;
  • B : Module lunaire (LM) inhabité ;
  • C : CSM habité en orbite basse terrestre ;
  • D : CSM et LM habités en orbite basse terrestre ;
  • E : CSM et LM habités en orbite terrestre elliptique (apogée de 7400 km) ;
  • F : CSM et LM habités en orbite lunaire ;
  • G : Atterrissage sur la Lune du module lunaire habité.

Ce qui allait devenir la mission Apollo 8 était à l’origine appelé “mission C”.

De tous les composants de la mission, le module lunaire (LM), qui devrait en fin de compte se poser sur la Lune, posait le plus de difficultés. Sa conception était retardée, et lorsque le premier modèle est arrivé à Cap Canaveral en juin 1968, plus d’une centaine de défauts ont été identifiés. Grumman Aircraft Engineering Corporation, principal actionnaire du module, prédisait qu’il ne serait pas prêt avant février 1969, ce qui retarderait d’autant la mission.

George Low, directeur du programme Apollo, a proposé une solution au mois d’août. Puisque le CSM serait prêt à lancer trois mois avant le module lunaire, ils pouvaient envisager un vol uniquement avec ce premier en décembre 1968. Pour ne pas répéter l’expérience Apollo 7, cette mission devait voler en orbite basse, aller jusqu’à la Lune et éventuellement se placer en orbite lunaire. Ce nouveau projet a été baptisé “mission C prime”, et devait permettre à la NASA d’évaluer les procédures d’atterrissage, qui auraient autrement du attendre Apollo 10 (“mission F”). L’empressement était également lié au 1er vol circumlunaire effectué le par le vaisseau soviétique Zond 5.

Cette nouvelle mission a presque été adoptée à l’unanimité. Seul James E. Webb, directeur de la NASA, a opposé une certaine réticence. Il a donné toutefois son accord, la majorité de l’agence insistant. Après avoir dirigé l’agence durant huit ans, il a démissionné quatre jours avant le lancement de la mission Apollo 7, le premier vol habité du projet.

Deke Slayton, directeur des opérations de vol, a échangé les équipes des missions D et E. La mission E a été en fin de compte annulée, ses principaux objectifs ayant été réalisés par les missions Apollo 8 et Apollo 9.

Le 9 septembre, l’équipe s’est exercé aux simulateurs de vol pour se préparer à la mission. Au moment du lancement, chaque membre avait effectué 7 heures de simulation pour chaque heure de vol effective.

Le changement de la mission Apollo 8 a été annoncé publiquement le 12 novembre.

La fusée spatiale Saturn V utilisée pour mettre en orbite Apollo 8 a été désignée SA-503. Il s’agissait du troisième modèle construit. À l’origine, le lanceur, terminé le 20 décembre 1967, n’était pas destiné à permettre des missions habitées. Cependant, la mission inhabitée Apollo 6 avait rencontré des problèmes importants avec le matériel, et la NASA a pensé qu’un vol habité suffirait à corriger sur place les instruments et résoudrait ces difficultés. La mission SA-503 a été ainsi programmée pour emmener des hommes.

Par ailleurs, la direction de la NASA a imposé certaines restrictions sur les vols habités : le second étage (S-II) devait passer les essais cryogéniques et des adaptations devenaient nécessaires pour rendre le module habitable. Le , le lanceur a été détaché de sorte à envoyer le second étage à un laboratoire pour effectuer les tests. Les bougies d’allumage des second et troisième étages ont également été modifiées. En mai 1968, une fuite a été identifiée au niveau du premier étage, qui a nécessité son remplacement.

N’ayant à son actif que deux lancements avec cette fusée, l’équipe au sol du centre spatial Kennedy avait des difficultés à tenir les horaires. Des problèmes secondaires ont affecté également le module lunaire. Le moteur principal présentait des fuites.

En août 1968, la mission a changé complètement. SA-503 devrait emmener des hommes sur la Lune, sans transporter de module lunaire, mais un équivalent – le module de test (Lunar Module Test Article, LTA), de même masse que ceux utilisés pour les missions Apollo 4 et Apollo 6. Afin de réaliser rapidement les derniers ajustements, ils ont été délégués à des équipes séparées. Les principales modifications concernaient la sécurité de l’équipage.

Le module Apollo 8 a été placé au sommet de la fusée le 21 septembre, qui a été déplacée de 5 km pour être amenée sur le site de lancement. Elle y est arrivé le 9 octobre. Les essais et vérifications se sont poursuivi jusqu’à la veille du lancement.

Apollo 8 a été lancé à 07:51:00 (heure des États-Unis) le 21 décembre 1968. Toute la phase de lancement s’est produite pratiquement sans encombre, seuls quelques problèmes mineurs se sont présentés. Les moteurs du premier étage (S-IC) étaient 0,75 % moins puissants que prévu, ce qui a demandé une combustion prolongée de 2,45 secondes. Après la fin de la combustion du second étage, la fusée a subi des oscillations que Frank Borman évaluait à 12 Hz de fréquence pour environ ±0.25 g (±2.5 m/s²). Le premier lanceur Saturn V habité a placé le vaisseau dans une orbite elliptique (181,5 km par 191,3 km) terrestre, d’une période de 88 minutes et 10 secondes. L’apogée réel était légèrement supérieur à la valeur attendue. Le premier étage s’est écrasé dans l’océan Atlantique, à 30° 12′ N, 74° 07′ O. Le second étage a fait de même, à 31° 50′ N, 37° 17′ O.

Les 2 heures et 38 minutes qui ont suivi, l’équipage et le centre de contrôle se sont assuré que le vaisseau était complètement opérationnel et prêt à être lancé sur la trajectoire d’injection translunaire (Trans-Lunar Injection, TLI), par une propulsion qui placerait l’appareil sur une trajectoire de transfert jusqu’à la Lune. L’équipe s’est assuré que le troisième étage (S-IVB) fonctionnait – dans les essais inhabités précédents, il ne s’était pas rallumé.

Au cours du vol, trois hommes étaient dédiés aux communications avec la capsule (les “capcoms). Ils étaient normalement les seuls à communiquer avec l’équipage. Michael Collins était le premier à prendre du service et 2 heures 27 minutes et 22 secondes après le lancement, il a émis un premier signal radio : “Apollo 8. You are Go for TLI”. Durant les douze minutes qui précédaient l’allumage, l’équipage a continué la surveillance des instruments. Le troisième étage s’est allumé à l’heure dite et a brûlé complètement en 5 minutes et 17 secondes. La vitesse de l’appareil a été portée à 10 822 m/s et la poussée a cessé lorsqu’ils avaient atteint une altitude de 346,7 km.

Après que le troisième étage ait eu effectué les opérations adéquates, il s’est séparé de l’appareil. L’équipage a fait alors tourner le vaisseau pour prendre quelques photographies de celui-ci tout en vérifiant que la navigation fonctionnait. Ils ont vu, à cette occasion et pour la première fois de leur voyage, la Terre en entier : ils ont été les premiers à assister en personne à un tel spectacle.

Borman s’inquiétait que le troisième étage reste si proche de l’appareil, suggérant au centre de contrôle que l’équipage effectue une manœuvre de séparation. Ils ont proposé de pointer le vaisseau dans la direction opposée à celle de la Terre puis d’utiliser les propulseurs RCS pour gagner 0,9 m/s, mais Borman ne voulait pas perdre l’étage de vue. Après délibération, il a été décidé de le faire quand même, et en gagnant 2,7 m/s. Ces discussions se sont achevé en retardant d’une heure le plan de vol de la mission.

Cinq heures après le lancement, le centre de contrôle a forcé le troisième étage à consommer le carburant restant pour se placer en orbite solaire, de sorte à ne pas risquer de collision avec la mission. Il s’est placé en orbite elliptique 0,99 par 0,92 UA, d’inclinaison 23,47° et de période 340,80 jours.

Le principal rôle de Jim Lovell en tant que pilote du module de commande était de superviser la navigation. Bien que le centre de contrôle effectuait tous les calculs, il fallait en cas de perte de liaison que l’équipage puisse rentrer sur Terre. Pour cela, il utilisait les étoiles au moyen d’un sextant monté dans l’appareil, qui permettait de mesurer l’écart angulaire entre une étoile connue et la Terre (ou la Lune). Cette tâche s’est révélé ardue, d’autant que le largage du troisième étage (S-IVB) avait provoqué la formation d’un nuage de débris autour du vaisseau, qui rendait difficile le repérage des étoiles.

Après sept heures de mission, le retard pris pour se séparer du troisième étage associé aux mesures de Lovell ont montré qu’ils étaient décalés d’une heure et 40 minutes environ sur le plan de vol. L’équipage a placé le vaisseau en contrôle thermal passif (Passive Thermal Control, PTC), qui n’est autre qu’appliquer le principe du barbecue : le vaisseau tournait sur lui-même, au rythme d’un tour par minute, pour assurer une distribution égale de la chaleur. Cela s’avérait nécessaire, dans la mesure où le Soleil peut chauffer le côté éclairé à plus de 200 °C, alors que le côté dans l’ombre se refroidit à -100 °C. De tels écarts de température pourraient endommager le bouclier thermique ou l’intégrité de la capsule, voire provoquer l’explosion des réservoirs. Puisqu’il était impossible de tourner selon un axe, l’appareil décrivait un cône en se déplaçant, mouvement qui devait être contrôlé régulièrement, car il avait tendance à s’amplifier.

La première correction en vol s’est déroulé à la onzième heure après le décollage. Les tests au sol avaient montré un léger risque existant pour que le système de propulsion du module de service (Service Propulsion System, SPS) explose s’il était utilisé sur de longues périodes, à moins que sa chambre de combustion ne soit “préparée” en premier lieu. Un moyen de réaliser cela était d’allumer le moteur pendant une courte durée, ce qui a été fait pendant 2,4 secondes, ajoutant 6,2 m/s à la vitesse de l’appareil. C’était moins que les 7,5 m/s prévus, et cette sous-performance a été attribuée à une bulle d’hélium dans les lignes d’oxydant, qui aurait réduit la pression d’éjection. La vitesse attendue a été atteinte en utilisant le système de propulsion du module de contrôle pour compenser (Reaction Control System, RCS). Deux corrections supplémentaires avaient été planifiées, mais elles ont été annulées dès que les mesures ont indiqué une trajectoire presque parfaite.

Après onze heures de vol, l’équipage avait veillé plus de 16 heures – ayant été réveillés environ 5 heures avant le lancement. Frank Borman a démarré sa période de sommeil de 7 heures, mais a éprouvé des difficultés à dormir. La NASA avait planifié les heures de sommeil pour qu’au moins un des membres d’équipage soit éveillé afin de corriger d’éventuels problèmes, mais les communications radio avec le sol avec le bruit des ventilateurs rendaient toute tentative d’assoupissement difficile. D’autant plus qu’en impesanteur, les astronautes devaient dormir attachés et sans oreillers.

Environ une heure après avoir commencé sa période de sommeil, Borman a demandé l’autorisation de prendre des somnifères, laquelle lui a été accordée mais la pilule n’a eu que peu d’effets. Après sept heures de sommeil approximatif, Borman s’est réveillé malade. Il a vomi deux fois et s’est plaint de diarrhées. L’équipage a nettoyé ce qui leur était possible. Borman ne voulait pas révéler ces informations au sol, mais Lovell et Anders ont insisté. Ils ont utilisé l’équipement d’enregistrement (Data Storage Equipment, DSE), destiné à effectuer des mesures de télémétrie et d’enregistrement audio, qui pouvait être ensuite propulsé à haute vitesse en direction de la Terre. Ils ont raconté l’état de santé de Borman, puis l’ont envoyé au centre de contrôle, disant qu’ils “aimeraient une évaluation des commentaires vocaux”.

Une visioconférence s’est tenue entre l’équipage et le personnel médical au second étage du module. Il a été décidé que cela n’était pas inquiétant, Borman ayant soit développé une gastroentérite bénigne – ce qui était l’avis de Borman – soit une réaction aux somnifères. À la lumière moderne, on pense qu’il aurait plutôt été victime du mal de l’espace, qui affecte environ un tiers des astronautes lors de leur première journée en vol.

Le voyage de transfert s’est fait presque sans encombres, l’équipage se contentant de vérifier que les instruments fonctionnaient. Pendant ce temps, la NASA a organisé une diffusion télévisée pour la 31ème heure de vol. La caméra utilisée, lourde de 2 kg, était un modèle grand-angle (160°) noir-et-blanc, muni d’un second objectif téléphoto (9°).

Au cours de cette première diffusion, l’équipe a proposé une visite du module et a tenté de filmer la Terre. Cela a été cependant difficile, d’autant que l’image de la caméra saturait à la moindre source lumineuse. Après 17 minutes d’émission, la rotation de l’appareil avait placé l’antenne en dehors du champ de réception de la Terre. La communication s’est terminé sur la transmission de Lovell, souhaitant un bon anniversaire à sa mère.

À ce stade, toutes les périodes de sommeil planifiées avaient été abandonnée. Après 32½ heures de vol, Lovell s’est couché, soit environ 3½ heures avant ce qu’il avait prévu. Il a été suivi d’Anders qui a pris des somnifères.

Une seconde diffusion a eu lieu à la 55ème heure. L’équipe avait, cette fois, trouvé les filtres adaptés, ce qui leur a permis de réaliser la première émission télévisée qui montrait la Terre en entier. L’équipage a passé les 23 minutes de l’émission à décrire ce qu’ils y voyaient, les couleurs, etc.

Après environ 55 heures et 40 minutes de vol, l’équipage d’Apollo 8 est devenu les premiers êtres humains à entrer dans la sphère d’influence gravitationnelle d’un autre corps céleste : l’attraction gravitationnelle de la Lune devenait plus intense que celle de la Terre. Ils étaient alors à 62 377 km de la surface de la Lune, à une vitesse de 1 216 m/s par rapport à celle-ci. L’équipage calculait toujours sa trajectoire à partir du site de lancement, et a continué ainsi jusqu’à la correction à mi-parcours qui devait leur permettre de changer de référentiel pour repartir sur Terre. Cette dernière n’était prévue que pour leur treizième heure de vol en orbite lunaire.

Le dernier événement important avant leur entrée en orbite lunaire consistait à ralentir, pour obtenir une vitesse de 0,6 m/s. À la 61ème heure très exactement, alors qu’ils étaient à 39 000 km de la Lune, l’équipage a allumé le RCS pendant 11 secondes.

À la 64ème heure de vol, ils ont préparé l’insertion en orbite lunaire (Lunar Orbit Insertion-1, LOI-1). Cette manœuvre ne permettait aucune erreur et devait être effectuée de la face cachée de la Lune, sans contact possible avec la Terre. L’ordre positif a été donné à la 68ème heure. Après 68 heures et 58 minutes de vol au total, le vaisseau est passé derrière la Lune et a perdu tout contact radio avec la Terre.

Dix minutes avant l’opération LOI-1, l’équipage a vérifié les systèmes du vaisseau. Ils ont aperçu enfin la Lune, du côté caché. Seulement deux minutes les séparaient du lancement et ils n’avaient que peu de temps pour apprécier la vue.

L’allumage des propulseurs s’est fait 69 heures 8 minutes et 16 secondes après le lancement, le moteur a brûlé pendant 4 minutes et 13 secondes, plaçant Apollo 8 en orbite elliptique lunaire. L’équipage a décrit cet instant comme les “quatre plus longues minutes de leur vie”. Si la propulsion n’avait pas duré exactement le temps prévu, le vaisseau aurait eu une trajectoire très excentrique voire aurait été éjecté dans l’espace. Si elle avait trop duré, ils se seraient écrasés à la surface de la Lune. Après s’être assurés que le vaisseau fonctionnait, ils ont eu l’occasion de jeter un œil à la Lune, autour de laquelle ils allaient être en orbite pendant 20 heures.

Sur Terre, le centre de contrôle attendait. S’il y avait eu un problème, le vaisseau apparaîtrait trop vite et les corrections devraient être effectuées rapidement. Au moment prévu, un signal a été reçu en provenance du vaisseau, confirmant son orbite (311,1 km par 111,9 km) autour de la Lune.

Après avoir rapporté l’état du vaisseau, Lovell a donné la première description de la surface de la Lune :

La Lune est essentiellement grise, sans couleur ; ressemble au plâtre ou à une espèce de sable de plage grisonnant. On peut voir pas mal de détails. La Mer de la Fertilité ne se présente pas aussi bien ici qu’elle le fait sur Terre. Il n’y a pas autant de contraste entre elle et les cratères environnants. Les cratères sont tout arrondis. Il y en a pas mal, certains sont plus récents. Beaucoup d’entre eux — particulièrement les arrondis — ont l’air d’avoir été frappés par des météorites ou des projectiles divers. Langrenus est plutôt un gros cratère ; il a un cône au centre. Les murs du cratère sont aplatis, environ six ou sept terrasses différentes là-dessous.

Lovell a poursuit sa description du terrain. L’une des tâches dédiées à l’équipage consistait à effectuer une reconnaissance en vue d’un atterrissage, notamment sur Mare Tranquillitatis où Apollo 11 devait se poser. Le lancement d’Apollo 8 avait été choisi pour que le site soit correctement éclairé. Une caméra s’assurait que chaque seconde de la Lune serait enregistrée. Bill Anders a passé l’essentiel des 20 heures à prendre des photographies de lieux connus. À la fin de la mission, ils avaient 700 photographies de la Lune, et 150 de la Terre.

Durant l’heure au cours de laquelle le vaisseau était en contact avec la Terre, Borman a demandé des informations sur les données du SPS. Il voulait s’assurer que les moteurs fonctionnaient et pouvaient être utilisés pour revenir sur Terre en cas de besoin.

Lors de leur deuxième apparition, l’équipage a diffusé des images de la surface de la Lune. Anders a décrit les cratères au-dessus desquels ils passaient. À la fin de cette seconde orbite, ils ont engagé la procédure LOI-2, 11 secondes de propulsion qui devait rendre l’orbite plus circulaire (112,6 km par 114,8 km). Lors des deux orbites suivantes, l’équipe s’est occupé de maintenance et a photographié la Lune.

Lorsque le vaisseau est apparu pour la quatrième fois, ils ont assisté à un événement jamais observé : un “lever de Terre”. Ils en ont pris une photographie noir-et-blanc, puis une en couleurs. Il est important de remarquer que, la Lune et la Terre tournant de manière synchrone, on n’a jamais observé de tel “lever de Terre” depuis la surface lunaire – c’est le déplacement du vaisseau, en orbite, qui a permis ce phénomène.

Earthrise

Anders a pris encore quelques photographies, tandis que Lovell s’occupait de la navigation, permettant à Borman de se reposer. Il a réussi à somnoler pendant deux orbites. Borman s’est réveillé en remarquant que ses camarades commençaient à avoir des difficultés. Ils veillaient depuis trois jours. Reprenant les commandes, ils les a invité à dormir, ce qui l’a opposé à quelques protestations de la part d’Anders. Ce dernier a finalement donné son accord, à condition que le commandant place l’appareil photo de sorte à prendre des images automatiques de la Lune.

Lors de leur neuvième orbite, une nouvelle transmission télévisée a pris place. Borman a présenté l’équipe, puis chacun a fait part de ses impressions sur la surface lunaire et ce qu’ils pensaient de leur aventure. Après avoir parlé de la Lune, Anders a déclaré qu’ils avaient un message pour tous ceux sur Terre.

Tout ce qui restait à faire consistait désormais à effectuer l’injection transterrestre (Trans-Earth Injection, TEI), qui leur permettrait de rentrer sur Terre et se produirait 2½ heures après la fin de la transmission télévisée. C’était l’étape la plus risquée de tout le vol. Si le SPS ne s’allumait pas, ils seraient bloqués en orbite lunaire, avec 5 jours d’oxygène et aucune possibilité de sortie. Une fois de plus, cet allumage devait se faire lorsque l’appareil était caché par la Lune, sans possibilité de contact avec la Terre.

L’allumage s’est produit au temps dit, les données télémétriques de l’appareil ont été mises à jour et le vaisseau est réapparu à 89 heures 28 minutes et 39 secondes. Lorsque le contact radio a été rétabli, Lovell a annoncé : “Soyez informés qu’il y a un Père Noël”. Ce à quoi Ken Mattingly, le capcom, a répondu : “Affirmatif, vous êtes bien placés pour le savoir”.

Lors d’une période de temps libre, Lovell a effectué quelques manœuvres et ajustements, afin de voir quelques étoiles. Ce faisant, une erreur de manipulation a effacé une partie de la mémoire de l’ordinateur de contrôle, ce qui a provoqué une erreur dans l’unité de mesure inertielle (Inertial Measuring Unit, IMU). Elle indiquait que le module était dans la même position qu’avant le décollage et utilisait les moteurs pour “corriger” la trajectoire.

Une fois que l’équipage avait réalisé la raison de cette erreur, il a compris qu’il lui fallait introduire manuellement toutes les données effacées pour corriger l’ordinateur en indiquant sa position exacte. Il a fallu 10 minutes à Lovell pour évaluer cette modification, se basant sur l’observation des étoiles Rigel et Sirius, et 15 minutes de plus pour effectuer les corrections sur l’ordinateur.

Seize mois plus tard, Lovell devait à nouveau effectuer ce genre de corrections, dans des conditions plus critiques, au cours du vol Apollo 13. Dans son livre, Lost Moon: The Perilous Voyage of Apollo 13 (qui a été renommé Apollo 13 lorsque le film éponyme est paru sur les écrans), Lovell écrit, “Mon entraînement [sur Apollo 8] se révélait utile !”

Le voyage de retour sur Terre était avant tout pour l’équipage une période de détente, et de maintenance légère de l’appareil. Les spécialistes avaient déterminé la trajectoire de retour, qui a permis au module de rentrer dans l’atmosphère 2½ jours après avoir quitté l’orbite lunaire, et d’amerrir dans l’océan Pacifique.

Le 25 décembre après-midi, l’équipage a effectué sa cinquième et dernière émission télévisée : les trois hommes ont présenté une petite visite du module, montrant comment un astronaute vit dans l’espace. Après celle-ci, ils ont trouvé un petit cadeau de Deke Slayton dissimulé dans le réservoir à nourriture : une véritable dinde farcie, trois bouteilles miniatures de brandy – qui sont restées fermées – ainsi que de petits cadeaux pour leurs épouses.

Après deux jours calmes, l’équipage s’est prépara à la rentrée : l’ordinateur contrôlait la trajectoire et l’équipe devait amener le vaisseau dans la bonne position. En cas de défaillance du système informatique, Borman aurait pris le relais.

Après s’être séparé du module de service, l’équipage s’est assis dans le module de contrôle pour attendre les six minutes avant la rentrée. Ils ont observé un brouillard lumineux, dû à la formation de plasma autour de la capsule. Cette dernière a progressivement décéléré, atteignant au maximum 6 g (59 m/s²). À 9 km d’altitude, un premier parachute a stabilisé l’appareil. Il a été renforcé, à 3 km, par les trois parachutes principaux. La position d’amerrissage était prévue à 8° 06′ N, 165° 01′ O.

En atteignant l’eau, les parachutes ont emporté le vaisseau qui s’est retrouvé renversé (position prévue par les ingénieurs, sous le nom de stable 2 position). Après avoir plongé de 3 m, les trois ballons de flottaison ont redressé la capsule. Les premiers hommes-grenouilles sont arrivé 43 minutes après l’amerrissage, et la capsule a été portée à bord de l’USS Yorktown.

Apollo 8 se déroule à la fin de l’année 1968, une année où de nombreux bouleversements se produisent dans le monde :

  • Les chars de combat soviétiques avaient mis un arrêt aux manifestations de Prague dans ce que l’on appellera le “Printemps de Prague” ;
  • Robert Kennedy et Martin Luther King ont été assassinés ;
  • La guerre du Viêt Nam avait pris un tournant important avec l’offensive du Têt ;
  • Les campus des universités américaines se sont rebellés ;
  • Manifestation des étudiants en mai 1968 à Paris.

C’est également dans un contexte de guerre froide qu’est programmée la mission. Cependant, son succès a tracé le chemin qui permettra à la NASA de remplir l’objectif fixé par le président John Fitzgerald Kennedy : se poser sur la Lune avant la fin de la décennie.

Cette mission a été la mieux couverte médiatiquement depuis le premier vol orbital américain – Mercury Atlas 6 en 1962. Près de 1 200 journalistes couvraient l’événement, la BBC réémettant dans 54 pays et dans plus de 15 langues différentes. Le journal soviétique Pravda en a même fait sa une.

Après la mission, Frank Borman a reçu un télégramme, d’auteur inconnu, sur lequel on pouvait lire : “Thank you Apollo 8. You saved 1968”. L’élément le plus marquant de la mission semble être la photographie du “lever de Terre”.

Le magazine Time a élu l’équipage d’Apollo 8 “Men of the year” de 1968.

Paramètres de la mission :

  • Masse du module : 28 817 kg
  • Le troisième étage du lanceur Saturn V a brûlé pendant 318 secondes
  • Apollo 8 a été projeté de l’orbite terrestre (7 793 m/s) à la trajectoire translunaire (10 822 m/s) lors de cette combustion
  • Décollage : 21 décembre 1968, 12:51:00 UTC
  • Amerrissage : 27 décembre 1968, 15:51:42 UTC (8°6′N, 165°1′W)

Orbite terrestre :

  • Périgée : 181,5 km
  • Apogée : 191,3 km
  • Inclinaison : 32,51°
  • Période : 88,17 min

Le module a effectué 10 révolutions autour de la Lune. Il est resté en orbite lunaire pendant 20 h 10 min 13,0 s.

  • Périapse  : 111,9 km
  • Apoapse : 311,1 km
  • Inclinaison : 12°
  • Période : 128,7 min

Mise à feu du système d’injection translunaire le à 15:41:38 UTC.

L’insigne porté par les membres d’équipage est de forme triangulaire – comme le module de commande d’Apollo. On y voit un “8” rouge, qui enlace la Terre et la Lune et qui représente aussi bien le numéro de la mission que son objectif (aller de la Terre à la Lune et revenir). Sur ce chiffre sont inscrits en blanc les noms des membres d’équipage.

Le dessin d’origine est dû à l’un des astronautes, Jim Lovell.

Dans ses romans De la Terre à la Lune et Autour de la Lune, Jules Verne décrit une mission étrangement semblable (rotation autour de la Lune, retour dans la mer, équipage de trois personnes, etc.), à quelques détails près : lancement par un canon gigantesque, impesanteur n’existant qu’au point d’équilibre entre les pesanteurs terrestre et lunaire, etc..

La NASA a motivé la création de films pour résumer chaque mission, qui sont souvent diffusés dans les musées, comme le Pacific Science Center de Seattle. Les images prises par l’équipage ont également été publiées, sous la forme d’émissions télévisées et enregistrées. Une récente réédition au format DVD est disponible depuis 2003.

Une partie de la mission Apollo 8 est mise en scène dans les miniséries From the Earth to the Moon, dans un épisode intitulé “1968”.

Source : Wikipédia France

Ajouter un Commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *