Wiki à Lunettes

MODERN WALES

Samplé sur The PitPeople Will Always Need Coal et Progress

 Description :

Film de 1958 de Peter Hopkinson.

Le dragon se lève dans cet hymne émouvant au renouveau industriel du Pays de Galles. De ses racines pastorales à ses avancées contemporaines dans l’énergie atomique en passant par l’expansion industrielle dans le charbon, le fer et l’acier, les prouesses industrielles du Pays de Galles deviennent un symbole du succès de la Grande-Bretagne. Ce film fait partie de la centaine sponsorisés par le Central Office Of Information pour promouvoir la Grande-Bretagne à l’étranger et encourager le commerce international dans l’après-guerre.

L’entre-deux guerres a vu un vif déclin dans l’économie galloise et à la fin de la seconde guerre mondiale, son commerce d’exportation autrefois prospère était moribond. Mais comme le montre ce film, en élargissant sa base pour incorporer des industries plus légères – en commençant par la formation du Treforest Industrial Estate près de Pontypridd, et l’expansion dans les produits pétrochimiques à Milford Haven – le peuple du Pays de Galles, “à la fois pratique et imaginatif, poétique et obstiné”, peut à nouveau apprécier la prospérité.

Source : player.bfi.org.uk/film/watch-modern-wales-1958/

DICK CAVETT SHOW

Samplé sur Every Valley

La voix reconnaissable entre toutes de Richard Burton est extraite de l’émission télévisée Dick Cavett Show diffusée en juillet 1980.

Émission en entier :

Extrait sur l’héritage minier de Burton :

EVERY VALLEY | Film

Samplé sur Every Valley, The Pit et Take Me Home

Description :

Travail, transports et divertissements dans les vallées minières du Sud du Pays de Galles, montrant les opportunités accrues de travail et de loisirs apportées aux communautés minières par les bus et les trains.

Every Valley s’ouvre sur des cheminées crachant de la vapeur à l’aube, et se referme sur des scènes similaires de nuit. Entre les deux, il résume la vie quotidienne des vallées du Sud du Pays de Galles : alternant des images picturales de l’industrie, de la ville et des champs avec des scènes bien présentées des habitants individuels, et des passages légèrement plus vagues capturant la vie de communauté affluente au travail et durant les loisirs. Le son accompagnant ces plans (filmés sans son) provient de l’interaction entre un commentaire en vers libre élégiaque, mais efficacement écrit, avec de la musique extraite du Messie de Handel (que l’on finit par voir comme émanant d’une chorale locale).

Le film exprime une idéologie subtilement différente de celle de la National Coal Board Unit (en tant que société de production interne d’une société d’État, l’opposé de l’unité de production de Every Valley, British Transport Film). Le charbon est au cœur émotionnel des vallées, mais de plus en plus supplanté, sur le plan économique, par diverses industries légères. Subtilement cousu dans cette image brodée se trouve le système de transport nationalisé qui relie les vallées. Nous voyons des bateaux, des trains, des voies ferrées et, tout le long, des flottes de bus. Ce n’est que dans un film de British Transport Film que des plans banals de cars qui roulent dans la ville et les rues rurales acquièrent une qualité épique véritablement passionnée sans pourtant paraître ridicule. Également caractéristique de BTF est l’optimisme du film pour le progrès, souligné par les sentiments doux-amers du passage du temps.

Le talentueux réalisateur de Every Valley, Michael Clarke, incarne la génération sous-estimée de cinéastes qui ont produit des œuvres compétentes et parfois inspirées pour des unités comme BTF de la fin des années 1940 à la fin des années 1970. La narration du film a été écrite par Norman Prouting, autre pilier du documentaire moins connu mais prolifique, qui a beaucoup écrit et réalisé pour BTF, et effectivement pour le NCB. Sorti la même année que les films célébrés du troisième programme Free Cinema, Every Valley caractérise le meilleur du cinéma documentaire non “Free”. La production glorifiée de Lindsay Anderson et ses cohortes roulait parfois en roue libre jusqu’à la négligence, suggérant un désordre authentique derrière la surface propre des années 1950. Every Valley est solidement orchestré, richement mélodieux, méticuleusement professionnel, engagé pour l’avancée et le respect pour l’histoire. Il est imprégné de sentiment romantique pour l’harmonie musicale et sociale (“mineurs et choristes, amants et seuls de la même manière”).

Nous n’avons pas besoin de partager cette vision du monde pour le trouver très émouvant. Et contrairement à la rhétorique de Free Cinema, les documentaires “de l’establishment” étaient capables d’être frais et tendres. Cinquante ans plus tard, les débats critiques d’autrefois ont passé et Every Valley peut être apprécié comme l’un des films les plus agréables du catalogue à la richesse embarrassante de BTF.

Patrick Russell

Source : http://www.screenonline.org.uk/film/id/1283510/index.html

Sample de Every Valley à 50 secondes, ceux de The Pit à environ 6 min celui de Take Me Home à 13 min 55.

NEW POWER IN THEIR HANDS

Samplé sur The Pit et Progress

Description :

La révolution des méthodes de travail du front de taille amenée par les techniques de chargement propulsées par la mécanique.

 

C’est un film simple mais efficace racontant l’histoire de la mécanisation des mines et des développements technologiques de l’industrie du charbon après la seconde guerre mondiale. L’industrie avait souffert de beaucoup de critiques après la guerre et la nationalisation. Il y avait une pénurie de main d’œuvre, de technologie et d’investissement, et un besoin urgent de charbon pour la puissance et l’industrie. Le rue hiver de 1947 avait aggravé la pénurie de charbon et on a eu besoin urgemment de projets pour avoir plus de charbon grâce au programme à long terme et l’amélioration technologique. En 1947, environ un tiers des mines fonctionnaient avec de la technologie ancienne. Douze ans plus tard, la situation s’était grandement améliorée. Soit en achetant des machines spéciales de l’étranger, en adaptant ses propres machines et en s’embarquant dans un programme de formation et de développement, l’industrie, en 1958, faisait face à un surplus de charbon.

La narration, écrite par l’agent des films du National Coal Board, Donald Alexander, et faite par le chanteur folk Ewan McColl, est efficace et pertinente. Les critiques de l’industrie minière, telle que la poussière dans le charbon et des morceaux trop gros ou trop petits (les usagers domestiques voulaient des gros, les centrales électriques des petits) sont abordées. Bien qu’aujourd’hui le charbon a peu d’utilisateurs domestiques, durant les années 1950, c’était dans bien des foyers la seule source de chauffage et de cuisson, et une industrie vitale à la nation ; les critiques devaient être prises au sérieux.

 

Expliquer des idées complexes de manière simple était la caractéristique principale des productions NCB, et la narration claire de New Power In Their Hands est aidée par un montage efficace du pilier de NCB, Kitty Wood. Les scènes d’ouverture posent la question “Connaissez-vous ce mineur ?”, servant à personnaliser le film ; à la fin, le public a une même compréhension du travail de mineur et comment il est rendu plus efficace par la technologie. Dans l’ensemble, c’est une œuvre efficace de propagande industrielle exposant les grandes lignes des problèmes et des améliorations au sein de l’industrie minière, point de vue partagée par le périodique Film User, qui l’a évalué comme “Excellent”.

Simon Baker

Source : screenonline.org.uk/film/id/474567

KING COAL

Utilisé dans les visuels live de Progress

Description :

King Coal (le roi charbon) est réveillé de son royaume sous-terrain pour voir les usines et foyers de la Grande-Bretagne qui font appel pour avoir plus de charbon. Il s’assure qu’ils en aient.

Sorti un an après le lancement en 1947 du National Coal Board, ce court film d’animation fonctionne comme film de recrutement et œuvre générale de propagande pour l’industrie minière. Le personnage de comptine de “Old King Cole” devient King Coal, qui est réveillé des profondeurs de la terre par le cri pour du combustible pour les foyers et les usines. Une fois à la surface, il enjambe fièrement le cœur de la Grande-Bretagne pour agir comme un guide pour l’industrie. Le film passe habilement de ses débuts de fantaisie à des environnements plus réalistes, avec “les trois violonistes” se transformant en mineurs. Il y a une poussée directionnelle quasi-constante de la gauche vers la droite dans la deuxième moitié du film, donnant une impression de mouvement et de progrès. Les gens avancent dans les mines à pied ou sur des machines, et puis sont récompensés par leur liberté, représentée par des loisirs comme le jardinage et le football, plutôt que la fortune.

 

Le film a été produit par Jules Pinschewer, qui même en 1948 avait presque 40 ans d’expérience de production de tels films d’animation de propagande. Après avoir rempli des brevets de “panneaux d’affichage vivants” à la fois à Berlin et Londres en 1910, Pinschewer a monté sa propre société de production en Allemagne en 1911. Tout en réalisant ses propres films, il a bâti sa réputation en recrutant les services d’animateurs visionnaires tels que Lotte Reiniger et Walther Ruthmann. Les origines juives de Pinschewer et sa réputation avant-gardiste l’ont poussé à quitter l’Allemagne durant la montée au pouvoir de Hitler et il s’est installé à Berne, devenant citoyen suisse en 1948. La branche britannique de sa société a été établie en 1946 et a produit d’autres films pour le gouvernement britannique sur les économies nationales, tels que Willie Does His Stuff (1948).

King Coal marque l’héritage européen de Pinschewer par ses forts motifs artistiques : l’utilisation fréquente de silhouettes ; les cercles concentriques récurrents ; et le mélange de matériaux dans la coloration, de forts blocs d’encre à des nuances de pastel, rendus très joliment en Technicolor.

 

Jez Stewart

Source : screenonline.org.uk/film/id/1370013

PLAN FOR COAL

Samplé sur The PitProgress et Der Rhythmus der Maschinen

Description :

Explication du plan national du National Coal Board pour la reconstruction et la réorganisation.

Le contrôle du gouvernement des mines de charbon durant la seconde guerre mondiale a été consolidé en 1947 quand le National Coal Board a repris l’industrie du charbon nouvellement nationalisée. En 1950, le gouvernement travailliste a fait paraître une publication intitulée Plan For Coal, proposant les 15 années de développement à venir de l’industrie. Deux ans plus tard, un film du même nom offrait une présentation plus acceptable du document pour la consommation publique.

 

Tandis que la nationalisation du charbon était un remaniement de l’industrie du charbon durant la guerre, ce documentaire, Plan For Coal, est une modification du film de propagande du temps de la guerre. Les appels à la fierté et l’industrie nationales, qui invoquaient auparavant l’unité du temps de la guerre, résonnent ici dans la cause du soutien de la reconstruction et “notre avenir comme grande puissance”.

En 1952, une administration conservatrice était aux commandes et les complications de la gestion des besoins énergétiques de la nation devenaient de plus en plus apparentes. Bien que le nouveau gouvernement n’ait pas tenté de revenir sur la nationalisation, il était motivé à promouvoir la compétition libre entre l’électricité, le gaz et le combustible solide avec une politique de combustible national. Ces complications sont absentes du film, qui se concentre sur le charbon comme la “richesse d’une nation”.

Le principal objectif du programme pour le charbon était d’accroître la production domestique mais, comme les généraux combattant lors de la dernière guerre, le programme de l’industrie britannique du charbon n’a pas réussi à refléter les réalités émergentes de l’utilisation mondiale de l’énergie. L’ouverture du pétrole venu d’Arabie saoudite, avec l’achèvement de l’oléoduc trans-arabe en 1950, a grandement augmenté l’approvisionnement du pétrole en Europe – produit que le film admet “offrir un challenge au charbon lui-même”. En fait, la consommation du charbon au Royaume-Uni allait chuter, dans un déclin reflété par la consommation accrue de son alternative importée moins chère.

James Piers Taylor

Source : screenonline.org.uk/film/id/1371094

GEORGE MALLORY

Mentionné sur The Race For Space

George Herbert Leigh Mallory, né le à Mobberley dans le comté de Cheshire, et aperçu pour la dernière fois le sur la crête nord de l’Everest, est un alpiniste britannique.

Dans une conférence à New York, il a répondu aux journalistes, qui lui demandaient sans relâche pourquoi il voulait escalader le mont Everest, “Parce qu’il est là” (Because it is there). Ce sont les quatre mots les plus célèbres de l’alpinisme.

Fils d’un ecclésiastique anglican, il est le frère aîné de Trafford Leigh-Mallory, commandant de la Royal Air Force. Enfant, il est un grimpeur passionné qui exerce ses qualités naissantes en escaladant des arbres ou de nombreux bâtiments.

À l’âge de 14 ans, il obtient une bourse pour étudier les mathématiques au Winchester College. En octobre 1905, il commence des études d’histoire au Magdalene College de Cambridge où il se lie d’amitié avec John Maynard Keynes.

Le , il épouse Ruth Turner. Le Royaume-Uni étant alors impliqué dans la Première Guerre mondiale, une lune de miel dans les Alpes est inenvisageable, et le jeune couple part camper. Les habitants locaux se méfient de ces jeunes gens vivant dans les bois, et ils sont arrêtés car soupçonnés d’être des espions allemands. George est artilleur durant le conflit, qu’il termine comme premier lieutenant.

De l’union de George et de Ruth naissent deux filles, Frances Clare le et Beridge Ruth le , puis un fils John le , une demi-heure avant que son père ne rentre d’une course dans les Alpes.

En 1904, Mallory et un ami essaient de gravir le mont Vélan dans les Alpes, mais doivent faire demi-tour peu avant le sommet à cause du mal de l’altitude. En 1911, il escalade le Mont Blanc.

En 1913 il était au sommet de ses qualités de grimpeur, et a escaladé seul le Pillar Rock, dans le parc national de Lake District, ce qui est maintenant connu comme la “voie Mallory”. Elle a été pendant de longues années considérée comme la voie la plus difficile au Royaume-Uni (cotée 5a selon la cotation anglaise, 6a en cotation française).

En 1921, dans le cadre d’une expédition explorant des voies menant au col Nord (col reliant le Changtse à l’Everest), il escalade plusieurs sommets proches de l’Everest afin de s’approprier la géographie de la région.

Lors de l’expédition britannique à l’Everest de 1922, alors que Mallory dirige une expédition en contrebas du col Nord, une avalanche emporte le groupe, tuant sept sherpas.

Mallory fait à nouveau partie de l’expédition britannique à l’Everest de 1924. Le groupe est composé d’une douzaine de britanniques et de porteurs tibétains et sherpas. Le , George Mallory et Andrew Irvine essaient d’atteindre le sommet de l’Everest par la voie passant par le col Nord. Leur compagnon d’expédition Noel Odell a rapporté les avoir vus à 12h50 dans l’ascension d’un des ressauts de la crête nord, et progressant fortement vers le sommet, mais aucune preuve n’a montré qu’ils ont effectivement atteint le sommet. Ils n’ont jamais rejoint le camp avancé et sont morts quelque part dans la montagne.

En 1933, Percy Wyn-Harris découvre, à 8 460 mètres d’altitude, un piolet qui aurait appartenu à Mallory ou Irvine. Le 1er, une expédition américaine en partie commanditée par la BBC et Nova (une série télévisée scientifique) et organisée et dirigée par Eric Simonson, retrouve le corps de George Mallory, à l’altitude de 8 290 mètres sur la face nord de l’Everest. Sa dépouille, congelée et momifiée est très bien conservée. Un altimètre en cuivre, un couteau et des lunettes de neige intactes sont également retrouvées. Avant de quitter le site, l’expédition réalise une cérémonie anglicane pour l’alpiniste et laisse le corps sur place, le recouvrant avec des pierres.

Aucun des deux appareils photo que les deux alpinistes avaient emportés avec eux n’a pu être localisé. Des experts de chez Kodak ont estimé qu’en cas de découverte d’un des appareils photo avec sa pellicule, ils seraient en mesure de la développer de manière à produire des images de qualité “imprimable”. Cela est dû à la nature de la pellicule utilisée, et à sa conservation dans un froid extrême. Les images tirées de ces appareils photo pourraient permettre de définir s’ils ont effectivement atteint le sommet avant de périr.

En 2004, une nouvelle expédition est formée afin de trouver les appareils photo, mais sans résultats. Une troisième expédition a également échoué dans cette quête en 2005. La question du succès ou de l’échec de Mallory et Irvine restera sans réponse, à moins que des preuves ne soient retrouvées au cours d’une autre expédition de recherche de Mallory et Irvine, mais les chances de retrouver quelque chose s’amenuisent d’année en année.

En 1975, un alpiniste chinois du nom de Wang Hongbao a rapporté à un de ses compagnons japonais avoir aperçu un vieux corps d’alpiniste britannique, lors de l’expédition chinoise de 1960, près de l’endroit où a été ultérieurement retrouvé le corps de Georges Mallory. A priori, la position du corps telle que décrite par cet alpiniste chinois à son compagnon japonais (et avec toutes les difficultés de compréhension entre les deux hommes) ne correspondait pas à la posture dans laquelle a été retrouvé Mallory. De plus la mention d’une blessure à la joue ne correspondait pas non plus à l’état de la dépouille de Mallory (atteint notamment d’une grave blessure au front). Ironie de l’histoire, cet alpiniste chinois a été emporté par une avalanche et a disparu dans une crevasse le lendemain de cette confession. C’est notamment sur ce témoignage que se sont basées les recherches de 1999 qui ont conduit à la découverte de Georges Mallory. Les différences constatées ont laissé alors à penser que non loin du corps de Mallory gisait Andrew Irvine, vu par l’alpiniste chinois en 1960. Mais aucune recherche ultérieure n’a permis de le découvrir.

Mis à part les deux appareils photo manquants, deux détails remarqués lors de la découverte du corps de Mallory sont curieux, bien que non concluants en eux-mêmes :

  • Tout d’abord, la fille de Mallory a toujours dit que son père portait sur lui une photo de sa femme avec l’intention de la laisser au sommet quand il l’aurait atteint. Cette photo n’a pas été retrouvée sur son corps. Étant donnée l’excellente conservation du corps et des vêtements de Mallory, cette absence de photo laisse à penser qu’il a pu avoir atteint le sommet et y avoir déposé la photo.
  • Ensuite, les lunettes de Mallory étaient dans sa poche lors de la découverte de son corps, ceci peut indiquer qu’il est mort de nuit, mais aussi qu’il avait retiré ses lunettes du fait du mauvais temps (la soudaine bourrasque de neige qui avait soustrait Mallory et Irvine aux yeux de Noel Odell ?). Peut-être que lui et Irvine avaient fait un effort final pour atteindre le sommet et étaient en train d’effectuer la descente très tard dans la journée. Étant donnés l’heure de leur départ et le chemin suivi, s’ils n’avaient pas atteint le sommet, il est improbable qu’ils aient encore été en chemin à la tombée de la nuit.

Toutefois, il n’est toujours pas certain qu’ils aient atteint le sommet, ce qui serait une formidable réussite, 29 ans avant l’ascension de Hillary et de Tensing Norgay. Depuis le lieu où il est généralement admis qu’ils ont commencé leur ascension – bien que le caméraman de l’expédition de 1924, Noel Odell, ait maintenu jusqu’à sa mort qu’ils sont partis d’un camp plus élevé – ils auraient mis environ onze heures. Ils disposaient de seulement huit heures d’oxygène (bien que cela dépende du débit, qui peut être modifié pour ne pas être utilisé à son maximum), ils ont pu se retrouver à court d’oxygène avant la fin de leur périple. Mais on ne peut écarter l’hypothèse selon laquelle le “bon soldat” Irvine se serait sacrifié pour son leader en lui remettant ses réserves d’oxygène pour lui permettre de terminer l’ascension. En tout état de cause, un élément déterminant serait la découverte d’un artefact laissé par les deux hommes au-dessus du second ressaut. Il est en effet impossible qu’une trace de leur passage au sommet ait pu subsister, alors que les zones rocheuses entre le 2ème et le 3ème ressaut ont pu conserver une preuve de leur passage.

Beaucoup de grimpeurs actuels expérimentés ne sont pas d’accord sur le fait que Mallory ait pu être capable d’escalader le difficile second ressaut sur la crête nord, qui se passe maintenant avec l’aide d’une échelle en aluminium placée par des chinois en 1975 pour esquiver la difficulté. Toutefois, Mallory est connu pour avoir surmonté un obstacle semblable dans le Nesthorn, et aucun de ses compagnons ne doutait de ses aptitudes et de sa motivation.

L’alpiniste italien Reinhold Messner est quant à lui formel, estimant que les deux hommes ne pouvaient pas franchir le deuxième ressaut à cette époque : “D’abord c’était impossible de le franchir en chaussures à clous. Ensuite, en 1925, le meilleur grimpeur du monde en rocher était Emil Solleder. Il est le premier à avoir gravi un passage de sixième degré. Avec corde double, assurage sur piton, et chaussure d’escalade spéciales. Et à une altitude de 3 000 mètres, dans les Dolomites. Mallory, lui n’avait pas de pitons, il ne portait pas de bonnes chaussures ; et sa corde, une fine corde de soie, n’aurait pas tenu le choc même d’une simple chute de trois mètres. En 1924, il était impossible de franchir un sixième degré à 8 600 mètres d’altitude. À cette époque-là, personne ne serait passé. Et puis Mallory était intelligent. Il savait, en le voyant du bas, qu’on ne pouvait pas escalader le Deuxième Ressaut comme on escalade une falaise en Angleterre”.

Même si la preuve est un jour faite que Mallory et Irvine ont effectivement atteint le sommet de l’Everest, peu considèrent qu’il faudrait alors réécrire l’histoire pour leur attribuer la première ascension. Les montagnards s’accordent généralement sur le fait qu’une ascension victorieuse implique non seulement d’atteindre le sommet, mais aussi de redescendre en vie.

Le groupe de rock belge Girls in Hawaii fait référence à George Mallory dans sa chanson Mallory’s Height sur l’album Everest.

Le groupe anglais Public Service Broadcasting fait référence à George Mallory et l’ascension de l’Everest dans le morceau Everest.

L’intrige du roman Le Sommet des dieux de Yumemakura Baku, adapté en manga par Jirō Taniguchi, raconte l’histoire de la dernière ascension de Georges Mallory, et de la découverte de son appareil photo.

En 1995, le petit-fils de Mallory, George Mallory II, atteint le sommet de l’Everest.

Source : Wikipédia France

COSMODROME DE BAÏKONOUR

Mentionné sur Korolev

Le cosmodrome de Baïkonour (en russe : Космодром Байконур ; en kazakh : Байқоңыр Космодромы), créé en 1956, est une base de lancement russe situé au centre du Kazakhstan, à proximité de la ville de Baïkonour. Le site, situé dans une région de steppe au climat extrême mais disposant d’un embranchement sur la ligne de chemin de fer Moscou – Tachkent, a été choisi en 1955 pour implanter un centre de lancement destiné à la mise au point des missiles balistiques intercontinentaux R‑7 Semiorka de l’Union soviétique. Lorsque l’activité spatiale soviétique s’est développée sous l’impulsion des équipes de Korolev qui avaient mis au point le missile, le centre de Baïkonour a été choisi pour placer en orbite les premiers satellites artificiels puis le premier homme dans l’espace.

Depuis cette époque, Baïkonour est le centre de lancement le plus actif de la planète. Une quinzaine de tirs ont lieu tous les ans, en particulier les vols habités russes et les lancements à destination de l’orbite géostationnaire. Le site, qui s’étend sur 6 717 km², dispose d’installations de fabrication de carburant, de plusieurs bâtiments d’assemblage de lanceurs et de préparation des satellites et des vaisseaux. Le cosmodrome abrite des pas de tir opérationnels pour les lanceurs Soyouz, Proton, la version terrestre de la Zenit, Dnepr et Tsyklon ainsi que de nombreux pas de tir désaffectés témoins de l’ensemble de l’histoire spatiale soviétique et russe. C’est également jusqu’à récemment un important site de tests pour les missiles balistiques intercontinentaux : 1 195 missiles et 1 230 lanceurs porteurs d’une charge utile avaient été tirés depuis Baïkonour au 1er janvier 2005.

L’éclatement de l’Union soviétique en 1991 a placé la base en territoire kazakh et la Russie paie un loyer relativement élevé au gouvernement de ce pays, source de conflits latents. Le gouvernement russe envisage depuis cette époque de développer les autres centres de lancement dont elle dispose mais elle n’a jusqu’à présent opéré réellement aucun transfert de ses activités même si le premier pas de tir de son nouveau lanceur Angara est en cours de construction sur la base de lancement de Plessetsk. L’activité du cosmodrome de Baïkonour a entraîné la création d’une ville adjacente qui a successivement reçu les noms de Zarya, Leninskiy, Leninsk et Zvezdograd avant de prendre en 1995 celui de Baïkonour.

Il sera remplacé par le cosmodrome de Vostochny dès sa mise en activité vers 2016 et situé dans l’oblast d’Amour, une région relativement libre de l’est de la Russie.

Baïkonour est implantée dans l’oblys de Kyzylorda au milieu de la steppe kazakhe dans une région au climat continental marqué par des étés torrides avec des maximums de 50°C parfois accompagnés de tempêtes de sable et des hivers glaciaux avec des températures atteignant −32°C accompagnés de forts vents. La base est située sur la rive droite (nord-est) du fleuve Syr-Daria et à 200 kilomètres à l’est de la mer d’Aral. Elle dispose d’un embranchement sur la ligne de chemin de fer Moscou – Tachkent qui se situe près de la station de Tioura-Tam aujourd’hui gare de la ville de Baïkonour née avec le cosmodrome.

Les premiers missiles soviétiques dont la portée ne dépasse pas 1 000 à 1 500 km sont lancés depuis la base de Kapoustine Iar. En 1954, le développement du missile balistique intercontinental R‑7 Semiorka dont la portée dépasse les 10 000 km entraîne la nécessité de disposer d’une nouvelle base de lancement. Pour répondre aux besoins de la nouvelle fusée qui doit retomber dans les eaux qui bordent le Kamtchatka, la nouvelle base de lancement ne doit pas comporter de reliefs marqués sur plusieurs centaines de kilomètres dans l’axe de lancement afin de permettre un pilotage par radio et les deux premiers étages doivent pouvoir retomber dans des zones inhabitées. Après une étude menée par une mission gouvernementale, le site de Tioura-Tam, qui se trouve au Kazakhstan, république intégrée dans l’Union soviétique, est choisi parmi quatre autres sites. Situé au milieu d’une zone désertique, il répond parfaitement aux contraintes imposées par les communications radio ; par ailleurs il est longé par une ligne de chemin de fer qui le relie aux principaux centres industriels du pays. Les seules habitations aux alentours se trouvent à la station de chemin de fer de Tioura-Tam où vivent une poignée de personnes attachées au fonctionnement de la ligne ferroviaire. Un embranchement sur la ligne principale s’enfonce dans la steppe et dessert une ancienne mine. La ville la plus proche est à plus de 100 km. Malgré les énormes problèmes de logistique soulevés par un endroit aussi désolé, la création de la base de lancement sur ce site, baptisé Base de lancement pour la recherche scientifique n°5 (en russe : Nauchno-issledovatelskï ispytatelnï poligon 5 ou NIIP-5), est approuvée au conseil des ministres de l’Union soviétique le 12 février 1955. Les premiers constructeurs arrivent sur le site au printemps 1955 et une agglomération commence à se former le long des berges du Syr-Daria ; celle-ci d’abord baptisée Site n°10 (Desyataya ploshchadka) prend ensuite le nom de Zarïa avant d’être rebaptisée Leninsk le 28 janvier 1958. Dès juin 1955 le site accueille 3 000 constructeurs et le nombre des résidents passe à 10 000 fin 1960. Les conditions de vie sont très dures pour les soldats (la construction est confiée à l’Armée) qui dorment dans des tentes ou des voitures de chemin de fer reconverties. L’eau est rare car celle du fleuve n’est pas potable. Les mieux lotis sont logés dans des baraques préfabriquées ou des huttes en bois. Mais la priorité est donnée à la construction du site de lancement du missile R-7 (site n°1) dont le premier tir doit intervenir en 1957 et aux installations permettant son assemblage et sa préparation (site n°2) éloigné d’un kilomètre et demi. Tous deux se trouvent à une trentaine de kilomètres de la nouvelle agglomération. En 1957 un aéroport est inauguré et permet d’offrir une variante au déplacement en train.

Le premier lancement depuis Baïkonour a lieu le 15 mai 1957 avec le tir du premier missile intercontinental, la R-7 Semiorka. Le même type de fusée sera utilisé pour lancer cinq mois plus tard le premier satellite artificiel Spoutnik 1. Le pas de tir n°1 est également utilisé en 1961 pour le lancement de la fusée abritant Youri Gagarine, premier homme placé en orbite dans l’espace. À cette occasion le cosmodrome est officiellement baptisé Baïkonour pour répondre aux besoins de la presse qui souhaite connaître l’endroit d’où est partie la fusée à l’origine de cet événement planétaire. Dans l’espoir de tromper les puissances étrangères, les autorités soviétiques décident de lui donner le nom d’une petite ville minière située en réalité à plus de 320 km au nord-est. Cette décision est approuvée par le conseil des constructeurs réunissant les principaux concepteurs de la fusée dont Korolev. Le pas de tir n°1 est par la suite reconstruit ou rénové à plusieurs reprises notamment après l’accident en 1962 d’une fusée Vostok victime d’une perte d’un accélérateur d’appoint 1,5 seconde après le décollage ainsi qu’en 1983 après l’explosion au décollage de la fusée portant le vaisseau Soyouz T10A dont l’équipage est sauvé par la tour de sauvetage.

Au cours des années 1960 la base connaît une croissance rapide avec la multiplication des lancements qui utilisent de nouveaux types de lanceurs nécessitant la construction de nouveaux complexes dédiés. L’activité de test des missiles balistiques est tout aussi importante et entraîne elle-même la construction de silos et de sites de préparation.

Un deuxième complexe de lancement pour la R‑7 Semiorka et ses dérivés comprenant un pas de tir et des installations d’assemblage est édifié entre décembre 1958 et août 1960 sur le modèle du premier complexe. À la même époque le constructeur Yanguel fait édifier un troisième complexe de lancement pour tester son missile R‑16. Il comprend deux pas de tir, un bâtiment d’assemblage, un bâtiment de stockage d’ogives nucléaires et trois silos. Lors de la première tentative de tir de la R‑16 l’explosion du missile tue une centaine de personnes. Le pas de tir resté intact, après avoir servi à tester le missile, est reconverti en 1964 pour lancer des fusées Cosmos avant d’être désaffecté. Toujours en 1960, on édifie un complexe de lancement pour le missile balistique R‑9 développé par Korolev : celui-ci comprend cinq plates-formes de tir ainsi que trois silos. Un quatrième complexe est construit entre 1962 et 1963 pour le missile balistique UR‑200 de Tchelomeï. En 1966 les installations sont modifiées pour permettre le tir du lanceur Tsyklon. Un des deux pas de tir est endommagé en 1990 et n’est pas réparé par la suite. Entre 1962 et 1963 est également édifié le complexe de lancement dédié aux missiles balistiques R‑36 de Yanguel. Celui-ci comprend deux plates-formes de tir et une vingtaine de silos dont 18 comportent des missiles opérationnels porteurs d’une arme atomique orbitale entre 1969 et 1973. Un autre complexe de lancement est construit pour la version R-36M comportant 9 silos. À compter de 1999 une version à usage civil, baptisée Dnepr, de ce missile est commercialisée et lancée depuis ce site. Entre 1964 et 1965 Tchelomeï fait édifier un complexe dédié au missile balistique UR‑100 qui comprend deux plates-formes de lancement. Quatorze silos contenant des missiles dérivés de l’UR‑100 (SS‑11 puis SS‑19) sont opérationnels sur la base dans les années 1970 et 1980. Le lanceur Rokot est développé entre 1987 et 1990 à partir de la dernière version du missile et est tiré à plusieurs reprises depuis ce complexe. Le neuvième complexe de lancement est édifié à compter de 1963 pour tirer le missile UR‑500 de Tchelomeï. Un complexe d’assemblage et deux plates-formes de tir sont achevés en 1965. Le lanceur mi-lourd Proton dérivé de l’UR‑500 est tiré pour la première fois en 1967 et continue sa carrière aujourd’hui. Deux autres plates-formes de lancement sont construites pour ce lanceur entre 1971 et 1976. Un dixième complexe de lancement est édifié dans les années 1970 pour tester des missiles balistiques de Yanguel. La construction d’un nouveau complexe dédié à la fusée géante lunaire N-1 est réalisée entre 1964 et 1969. Deux plates-formes de lancement et un bâtiment d’assemblage de très grande taille sont édifiés. Les quatre lancements de la N‑1 entre 1969 et 1972 sont des échecs et le complexe est abandonné. Il est réactivé et reconverti entre 1978 et 1988 pour le lanceur Energia porteur de la navette spatiale Bourane qui effectue un vol unique en 1988. Depuis le bâtiment (dénommé 112) est réutilisé pour la préparation des satellites. Entre 1978 et 1983 un complexe de lancement est édifié non loin des anciens pas de tir de la R-16 pour la fusée Zenit qui a été mise au point sur la base d’un accélérateur d’appoint d’Energia. En 1990 un des deux pas de tir est détruit par l’explosion au lancement d’une Zenit. L’autre pas de tir est réactivé en 2005 pour lancer la Zenit 3SLB commercialisée par la société Sea Launch. Le 25 juin 1966 le général de Gaulle devient le premier dirigeant occidental à visiter la base. Il assiste au tir de deux missiles R-16 et d’une fusée Cosmos. Par ailleurs un lancement a été annoncé pour le 6 février 2013 d’une fusée Soyouz avec, à bord, six satellites Globalstar.

À la suite de l’effondrement de l’Union soviétique, le Kazakhstan, autrefois république intégrée dans le pays, devient indépendant. La Fédération de Russie, qui a repris l’essentiel des installations de lancement et de l’activité spatiale de l’ex-URSS, ne dispose pas de base de lancement sur son territoire permettant le lancement de charges importantes en orbite géostationnaire. Par ailleurs un déménagement des activités spatiales de Baïkonour nécessiterait de reconstruire un très grand nombre d’installations pour les lanceurs qui n’étaient tirés jusque-là que de Baïkonour. Les nouveaux dirigeants russes décident de continuer à utiliser le cosmodrome de Baïkonour sous autorité kazakhe, et en 1994, les deux pays signent un contrat portant sur la location d’un espace de plus de 6 700 km² . Les lancements de missions habitées et de satellites géostationnaires russes continuent à être réalisés depuis le cosmodrome de Baïkonour.

En 1997, le président Boris Eltsine inaugure le cosmodrome de Svobodny en Sibérie orientale dans la région de l’Oblast d’Amour, sur la base d’anciennes installations militaires, et dont la latitude (51° 42) autorise des lancements vers l’orbite géostationnaire. Mais par manque de moyens financiers, la Russie ne parvient pas à construire des pas de tir permettant l’envoi de charges importantes et elle reste donc tributaire du Kazakhstan.

En 1999, deux fusées russes Proton qui utilisent des ergols particulièrement toxiques sont victimes de défaillance et s’écrasent en territoire kazakh. Ces accidents amènent le Kazakhstan à réexaminer le “contrat de location” de Baïkonour, et exiger une taxe supplémentaire sur les lancements commerciaux. Du côté russe, cette nouvelle exigence a pour conséquence d’accroître la volonté de se rendre indépendant du Kazakhstan. La Russie annonce alors son intention de délocaliser la quasi-totalité des activités de lancement de Baïkonour vers le cosmodrome de Plessetsk. Début 2002 Alexandre Kosovan, alors ministre de la Défense, confirme cet engagement pour l’horizon 2005. Mais dans les faits, seules les quelques activités spatiales militaires restantes sont réellement transférées à Plesetsk.

En outre, les instances gouvernementales russes, dont les forces spatiales de la Fédération de Russie, n’ont plus le monopole des décisions face aux industriels russes comme étrangers. Qu’il s’agisse de l’entreprise russo-européenne Starsem qui commercialise la fusée Soyouz, ou la firme russo-américaine International Launch Services qui possède le lanceur Proton 3, la manne financière fournie par le secteur privé contribue largement à maintenir le cosmodrome de Baïkonour opérationnel. La coentreprise Sea Launch envisage quant à elle d’ouvrir un service de lancement terrestre baptisé “Land-Launch” à partir de Baïkonour.

Le gouvernement russe a signé le 9 janvier 2004 un nouvel accord avec le Kazakhstan fixant le statut de Baïkonour, prolongeant la location du site jusqu’en 2050 et accroissant considérablement le rôle du Kazakhstan dans la gestion du site : les Kazakhs ont notamment insisté sur la nécessité de développer des lanceurs plus respectueux de l’environnement. Astana collaborera avec Moscou pour le développement du futur lanceur “Baïterek” qui sera une fusée Angara modifiée, réutilisable (prévenant ainsi la retombée des boosters sur le pays) et utilisant un combustible moins polluant. Par ailleurs, le Kazakhstan affiche désormais des ambitions spatiales, prévoyant de se doter de ses propres satellites de télécommunications.

La base a une superficie de 6 717 km² et s’étend sur 75 km du nord au sud et sur 90 km de l’est à l’ouest. Les installations spatiales sont regroupées en trois sous-ensembles qui portent chacune le nom du responsable de bureau d’études qui a été à l’origine de sa création :

  • La région centrale (zone Korolev) regroupe les premières installations qui ont permis le lancement du missile balistique intercontinental R-7 Semiorka puis des lanceurs dérivés de celui-ci qui a placé en orbite le premier satellite artificiel et le premier homme dans l’espace. C’est encore de là que partent les fusées Soyouz descendantes de la R‑7 qui vont notamment ravitailler la Station spatiale internationale et relever les équipages. C’est également dans cette zone qu’ont été construits les pas de tir de la fusée lunaire géante N‑1 et du lanceur Energia porteur de la navette spatiale Bourane. Cette zone comprenant également des pas de tir pour le missile R‑9 conçu par les équipes de Korolev avant d’être complètement dédié au spatial.
  • La partie orientale de la base dite flanc droit (zone Yanguel) regroupe les complexes de lancement des missiles et lanceurs développés par ce constructeur. Le premier pas de tir a été construit pour tester le missile balistique R‑16 et ses différentes déclinaisons. Les premiers tests du lanceur Cosmos‑1 ont été effectués là. Enfin tous les tirs de la Zenit 2 ont été effectués dans cette zone.
  • La partie occidentale de la base dite flanc gauche (zone Tchelomeï) regroupe les complexes de lancement des missiles et lanceurs développés par ce constructeur dont les missiles UR‑200, plusieurs générations de missiles UR‑100 et les différentes versions de la fusée Proton.

La base comprenait en 1990 notamment une installation de production d’oxygène et d’azote capable de produire 300 tonnes d’ergols cryogéniques par jour, trois installations de ravitaillement en ergols, une centrale électrique, deux aéroports et 470 km de voies ferrées. Baïkonour comprend également de nombreuses installations de lancement de missiles balistiques. Depuis sa création en 1955 jusqu’à l’effondrement de l’Union soviétique en 1991, Baïkonour a joué un rôle central dans les tests de missiles balistiques à ergols liquides. La base était d’ailleurs placée sous la direction du ministère de la Défense jusqu’en 1995.

La quasi-totalité des lancements russes sont effectués soit de Baïkonour soit du cosmodrome de Plessetsk. Ces deux bases sont complémentaires : Plessetsk est idéalement placée pour des lancements sur orbites très inclinées du fait de sa haute latitude (62° 8 nord, proche du cercle polaire arctique), Baïkonour, plus proche de l’équateur, permet d’atteindre plus facilement l’orbite géostationnaire, ou d’autres orbites peu inclinées comme celle de la Station spatiale internationale. La base de Baïkonour est principalement utilisée pour les lancements civils russes ou internationaux, sa position en plein territoire kazakh ne favorisant guère son emploi à des fins militaires russes. Au 1er janvier 2005, 1 195 missiles et 1 230 lanceurs porteurs d’une charge utile ont été tirés depuis Baïkonour.

Lorsque l’activité spatiale était à son pic au cosmodrome de Baïkonour au milieu des années 1980, la ville édifiée à proximité du cosmodrome comptait environ 100 000 personnes. Lorsque l’activité spatiale s’est effondrée à la suite de l’éclatement de l’Union soviétique en 1991, l’agglomération s’est transformée en une ville fantôme rendue invivable par la disparition des services les plus basiques tels que la distribution de l’eau. La reprise en partie liée à l’ouverture à l’international des activités spatiales russes ainsi que l’injection de fonds par le gouvernement russe ont permis de restaurer une certaine activité et qualité de vie. En 1995 le gouvernement kazakh a accepté de céder aux autorités russes locales la gestion de la ville. Celle-ci a été rebaptisée Baïkonour comme l’agglomération située à 300 km de là dont le nom avait été retenu pour le cosmodrome.

Le 24 octobre 1960, un prototype de fusée (R-16) a explosé sur l’aire de lancement, provoquant la mort de nombreux ingénieurs et techniciens soviétiques. Connu sous le nom de catastrophe de Nedelin, cet accident a porté un coup au programme de missile balistique intercontinental soviétique. Un mémorial a été érigé à Baïkonour et les techniciens de l’Agence spatiale fédérale russe s’y recueillent avant chaque lancement.

Baïkonour signifie en kazakh “la riche ou la belle steppe“, “l’endroit où pousse l’absinthe”, “la richesse brune”…

Source : Wikipédia France

SERGUEÏ KOROLEV

Mentionné sur Korolev

Sergueï Pavlovitch Korolev (en russe : Серге́й Па́влович Королёв ; en ukrainien : Сергій Павлович Корольов), né le  à Jytomyr (gouvernement de Volhynie, Empire russe) et mort le à Moscou (RSFS de Russie, URSS), est un ingénieur, fondateur du programme spatial soviétique. Grâce à son génie visionnaire, sa force de caractère et ses talents d’organisateur l’Union soviétique acquiert une position dominante dans le domaine spatial à la fin des années 1950 et au début des années 1960.

Korolev reçoit une formation d’ingénieur puis travaille dans le bureau d’études du constructeur d’avions Tupolev avant d’intégrer en 1931 le petit centre de recherche du GIRD qui effectue un travail de pionnier dans le domaine des fusées. Au sein du RNII soutenu par les militaires soviétiques, il travaille sur un avion-fusée et sur un missile propulsé par fusée. En 1938, il est arrêté au cours des purges staliniennes qui déciment les cadres du pays et est envoyé dans le bagne de la Kolyma dont il est sauvé grâce à l’intervention de parents et d’amis. Il est interné dans une charachka où il contribue, durant la Seconde Guerre mondiale, à mettre au point des fusées d’assistance au décollage d’avions. Mi 1945, il est libéré et envoyé en Allemagne comme tous les spécialistes des fusées soviétiques pour tenter de récupérer le savoir-faire que l’équipe de Wernher von Braun a acquis en concevant et produisant le missile V2. En mai 1946, alors que les relations avec les pays occidentaux se tendent, le dirigeant de l’Union soviétique Staline décide de lancer son pays dans la réalisation de missiles balistiques. Korolev qui a été identifié pour ses talents d’organisateur joue un rôle clé dans le plan de Staline.

Il est placé à la tête d’un des bureaux d’études du NII-88 où il est chargé de développer une copie améliorée du missile V-2. Par la suite plusieurs missiles aux capacités croissantes sont mis au point par son équipe : R-2, R-3, R-5. En 1953 les dirigeants soviétiques donnent leur accord pour le développement de son projet de missile balistique intercontinental R-7 porteur d’une tête nucléaire. Après avoir surmonté de nombreux problèmes de développement le missile effectue son premier vol en 1957 ; celui-ci est suivi de peu par le lancement du premier satellite artificiel Spoutnik 1. Korolev parvient à convaincre ses donneurs d’ordre militaires de l’intérêt de missions spatiales habitées. Le vol de Youri Gagarine, premier homme dans l’espace, et les premiers succès des sondes lunaires du programme Luna consacrent le triomphe de Korolev. Mais celui-ci doit lutter pour garder la faveur de ses donneurs d’ordre car, contrairement à ce qui se passe aux États-Unis, il n’existe pas à l’époque de véritable instance de pilotage du programme spatial civil en Union soviétique. Il a du mal à imposer ses projets contre des concurrents comme Vladimir Tchelomeï et Mikhail Yanguel tandis que ses relations avec d’autres responsables de bureau d’études dont dépendent ses réalisations, comme le constructeur de moteurs Valentin Glouchko, se tendent. Les dirigeants soviétiques décident tardivement en 1964 de relever le défi du programme Apollo et demandent à Korolev de battre les américains alors que le retard technique de l’industrie soviétique s’est creusé. Korolev, épuisé par l’ampleur de la tâche décède à 59 ans en 1966 au cours d’une opération chirurgicale qui tourne mal.

Korolev est né le 12 janvier 1907 à Jytomyr, ville provinciale du centre de l’Ukraine, qui fait partie à l’époque de la Russie impériale. Ses parents sont Maria Mykolayivna Moskalenko (Ukrainienne) et Pavel Iakovlevitch Korolev (Russe). Il s’agit d’un mariage arrangé et leur union n’est pas très heureuse. Trois ans après sa naissance, ses parents se séparent en raison de difficultés financières. Sa mère lui annonce le décès de son père alors que celui-ci n’est survenu qu’en 1929 (il n’a jamais revu son père après le divorce de ses parents). Korolev grandit à Nejine, sous la garde de ses grands-parents. Sa mère voulant qu’il ait une formation supérieure, il suit des cours à Kiev. C’est un enfant solitaire avec peu d’amis, mais il est bon élève, notamment en mathématiques. En 1916, sa mère épouse Grigori Mikhaïlovitch Balanine, un ingénieur électricien, qui a une bonne influence sur l’enfant. Grigori ayant obtenu un emploi aux chemins de fer régionaux, la famille déménage à Odessa en 1917. L’année 1918 est tumultueuse en Russie, avec la fin de la guerre mondiale et la Révolution russe. Les luttes intestines continuent jusqu’en 1920. Pendant cette période, les locaux des écoles restent fermés et le jeune Korolev doit poursuivre ses études à la maison. En 1923, il adhère à une société aéronautique locale. En 1925, Korolev part à Moscou et y termine ses études à l’Université Technique d’État de Moscou en 1929.

Après avoir obtenu son diplôme, Korolev obtient un premier emploi dans un bureau d’études chargé de la conception d’un aéronef baptisé OPO-4, ou 4ème section expérimentale. Ce projet rassemble certains des meilleurs concepteurs russes. Il est dirigé par Paul Aimé Richard, constructeur français d’avions, arrivé en URSS en 1928. Korolev ne se distingue pas particulièrement dans le groupe, mais s’emploie dans plusieurs projets personnels. L’un d’eux est la mise au point d’un planeur capable d’accomplir de la voltige. En 1930, il devient ingénieur principal chargé de la conception du bombardier lourd Tupolev TB-3.

C’est au cours de l’année 1930 que Korolev s’intéresse à l’utilisation de carburant liquide pour la propulsion par moteur-fusée. À l’époque, il cherche à utiliser cette technologie pour la propulsion des avions. Les dirigeants soviétiques ont lancé à la fin des années 1920 une politique très volontariste misant sur l’industrialisation à marche forcée et la recherche. Dans ce contexte la principale association paramilitaire soviétique, l’OSOAIAKHIM, crée en 1931 le GIRD, qui réunit des ingénieurs et des techniciens pour effectuer des recherches dans le domaine des fusées. Korolev participe à la fondation de la section moscovite en tant qu’adjoint de Friedrich Tsander, un des pionniers soviétiques de l’astronautique. Il y rencontre Mikhaïl Tikhonravov qui deviendra un de ses plus proches collaborateurs. La section moscovite du GIRD, qui compte une soixantaine de personnes, travaille sur une dizaine de projets utilisant plusieurs types de propulsion. Korolev met au point un planeur propulsé par un moteur-fusée RP-1 brûlant un mélange d’oxygène et de kérosène. En 1932 Tsander tombe malade et Korolev le remplace à la tête du GIRD moscovite. La même année, les militaires s’intéressent aux efforts déployés par le groupe et commencent à fournir des fonds. En 1933, le groupe réalise le premier tir d’une fusée à propulsion liquide, baptisée GIRD-09, soit sept ans après Robert Goddard et son lancement peu médiatisé de 1926.

En 1932 le GIRD moscovite a des contacts informels avec le GDL : ce laboratoire de recherche militaire installé à Léningrad rassemble 200 ingénieurs et techniciens travaillant dans le domaine de la propulsion à ergols liquides et la propulsion à propergol solide. Valentin Glouchko, qui concevra par la suite la majeure partie des moteurs propulsant les fusées de Korolev, y est responsable d’une section qui effectue des recherches méthodiques sur la propulsion à ergols liquides. Le GDL joue un rôle central dans la mise au point des roquettes.

Certains militaires soviétiques et en particulier le maréchal Mikhaïl Toukhatchevski, militaire novateur et très influent, ont pris conscience du potentiel des fusées. Toukhatchevski œuvre pour rapprocher le GDL et la section moscovite du GIRD . En septembre 1933, les deux structures sont fusionnées au sein de l’Institut de recherche scientifique sur les moteurs à réaction ou RNII (Реактивный научно-исследовательский институт, РНИИ ; Reaktivny naoutchno-issledovatelski institout, RNII). Le nouvel ensemble est dirigé par l’ancien responsable du GDL Ivan Kleïmenov, avec comme adjoint Korolev. Peu après la création du RNII, des divergences se font jour entre Korolev et Kleïmenov sur les objectifs de l’institut de recherche. Ce dernier considère que la mise au point des roquettes, constitue le projet de recherche prioritaire. Korolev est remplacé par Gueorgui Langemak ce qui sauvera sans doute la vie de Korolev par la suite. Au sein du RNII Korolev est responsable d’un projet de “missile de croisière” (projet 212) et surtout de l’avion-fusée RP-318-1. Ces deux engins sont propulsés par des moteurs développés par Glouchko. Le RNII met ainsi au point des systèmes automatisés de gyroscopes permettant de stabiliser le vol le long d’une trajectoire programmée. En 1934, Korolev publie l’ouvrage Une fusée dans la stratosphère.

En 1937 les purges staliniennes, manifestation de la paranoïa de Staline qui décime l’armée et les cadres du régime soviétique, frappent aveuglément les principaux membres du RNII. Le bureau d’études a été placé sous surveillance par la police secrète soviétique (le NKVD), car il avait été patronné par le maréchal Toukhatchevski qui a été une des premières victimes des purges. Un des ingénieurs du RNII qui brigue la direction du RNII rédige de fausses accusations contre les responsables du centre de recherches : Kleïmenov et son adjoint Langemak sont arrêtés sous l’accusation de déviationnisme trotskyste. Langemak avoue ses “crimes” sous la torture et sans doute aussi dans l’espoir d’éviter une condamnation à mort. Il dénonce à son tour Glouchko et Korolev. Kleïmenov et Langemak sont exécutés peu après. Glouchko est arrêté en mars 1938 et, tout en avouant ses actes de sabotage fictifs, dénonce ses collègues dont Korolev. Alors que Glouchko est interné dans la charachka TsKB-4, une prison pour ingénieurs, Korolev est envoyé dans la Kolyma, le pire bagne du Goulag soviétique. Il a la mâchoire fracassée pendant un interrogatoire et, victime du scorbut, il perd la moitié de sa dentition. Il sort à temps du bagne de la Kolyma libéré sur ordre de Lavrenti Beria grâce à l’intervention de sa mère et du constructeur d’avions Andreï Tupolev. Ce dernier obtient, en 1940, son transfert dans la charachka dont il est responsable. Peu après, Korolev est muté dans la charachka que dirige Glouchko et qui développe des fusées d’assistance au décollage pour avions. Glouchko en fait son adjoint et le responsable des tests.

Le 27 juin 1944, Korolev – ainsi que Tupolev, Glouchko et d’autres – est libéré par un décret spécial du gouvernement, mais les charges retenues contre lui ne seront abandonnées qu’en 1957. Le bureau d’études du NKVD passe sous l’autorité de la commission de l’aviation du gouvernement. Korolev continue à travailler dans ce bureau pendant encore un an, comme concepteur adjoint sous les ordres de Glouchko et étudie différents modèles de fusée.

À la fin des années 1930, les ingénieurs allemands dirigés par Wernher von Braun ont pris une énorme avance dans le domaine de la propulsion et du guidage des fusées en développant le missile V2. Après la défaite de l’Allemagne nazie en 1945, les Alliés tentent chacun de leur côté de récupérer ce savoir-faire. Les Américains, dans le cadre de l’opération Paperclip, mettent la main sur les responsables du projet, dont Von Braun, ainsi que sur un grand nombre de fusées. Staline envoie en Allemagne, avant même la fin des combats, tous les spécialistes soviétiques travaillant dans le domaine des fusées, y compris Korolev qui a été libéré à cette occasion. Les ingénieurs et techniciens soviétiques ont pour mission de collecter les informations, tenter de remettre en marche les installations de production des V2 et embaucher les experts et les techniciens allemands.

En mai 1946, Staline décide de lancer l’Union soviétique dans le développement des missiles balistiques. Les outils de production des V2 sont rapatriés sur le territoire soviétique. Korolev qui a été identifié pour ses talents d’organisateur est placé à la tête du bureau d’études spécial n°1 OKB-1, rattaché au NII-88 (ОКБ-1 НИИ-88), où il est chargé de développer une version améliorée du V-2. Un deuxième bureau d’études du NII-88 rassemble environ 150 spécialistes allemands du V-2 que les autorités soviétiques ont transféré de manière autoritaire en URSS avec familles et bagages. Ils sont dirigés par Helmut Gröttrup et sont installés dans un camp situé sur l’île de Gorodomlia sur le lac Seliger à 200 km de Moscou. Les autorités soviétiques leur demandent également de développer une version améliorée de la V-2. Parallèlement un établissement baptisé OKB-456 spécialisé dans la construction de moteurs-fusées à ergols liquides est créé dans une ancienne usine d’aviation à Khimki, dans la banlieue de Moscou ; Glouchko, nommé responsable de son bureau d’études, est chargé de fabriquer une copie du moteur du missile V2 avec l’aide de spécialistes et de techniciens allemands.

L’équipe de Korolev met au point plusieurs missiles aux capacités croissantes. Le missile R-1 est une copie du V2 dont plusieurs exemplaires sont tirés à partir d’ avec un taux de réussite proche de celui obtenu par les Allemands durant la guerre. Mais la production industrielle met beaucoup plus de temps car comme l’avait diagnostiqué un ingénieur allemand, l’Union soviétique a un retard de 15 ans. Les premiers missiles ne sortent de l’usine OKB-586, située à Dnipropetrovsk, en Ukraine, que fin 1952. Le missile R-1 sera déployé dans quelques unités opérationnelles. Une version sera utilisée comme fusée-sonde à des fins scientifiques. Le missile R-2 est une version agrandie de la R-1 avec une portée doublée (550 km) et une charge constituée d’un liquide radioactif qui devait être dispersé en altitude pour former une pluie mortelle. La R-2 est jugée moins bonne que la G-1 produite par l’équipe des ingénieurs allemands de Gröttrup. Korolev défend son projet mais incorpore certaines des innovations allemandes et son missile est finalement accepté et entre en production en juin 1953. La licence de construction de la R-2, cédée en décembre 1957 à la Chine, constituera le point de départ de l’industrie des missiles balistiques dans ce pays.

En , un décret du gouvernement soviétique officialise le lancement du projet de missile R-3 capable de délivrer une bombe nucléaire de 3 tonnes à 3 000 km de distance. Korolev a commencé à travailler sur sa conception dès 1947. De nombreuses solutions sont envisagées dans le document en 20 volumes que Korolev et ses ingénieurs finalisent en juin 1949. La solution du missile de croisière est tout autant mise en avant que celle du missile balistique ce qui reflète peut-être les préférences personnelles de Korolev. Pour le missile balistique trois architectures sont envisagées : fusée à plusieurs étages, fusée mono-étage avec réservoirs largables, étages assemblés “en fagot” et allumés simultanément avec un étage central ayant un temps de combustion plus long. Compte tenu du saut technologique nécessaire pour développer la R-3, Korolev préconise que la solution adoptée puisse servir de point de départ pour le missile balistique intercontinental de 8 000 km de portée demandé par les dirigeants soviétiques. Pour le missile intercontinental, sa préférence va à l’architecture en fagot préconisée dès 1947 par Tikhonravov tandis qu’il retient la solution de la fusée mono-étage pour la R-3. Mais cela suppose d’introduire pour cette dernière un grand nombre d’innovations :

  • diviser par 3 la masse à vide en utilisant des réservoirs intégraux et en remplaçant les gouvernes par le recours à un moteur-fusée monté sur cardan
  • améliorer l’impulsion spécifique de 22 % en utilisant le mélange oxygène liquide/kérosène plus performant à la place du mélange oxygène liquide/alcool tout en fournissant une poussée de 120 tonnes.

Le missile d’une longueur totale de 27 mètres doit atteindre une vitesse maximale de 4,7 km/s. Sa structure réalisée dans un nouvel alliage aluminium/magnésium a une masse au lancement de 71,72 tonnes et une masse à vide de 8,5 tonnes. Le saut technologique est trop important et il est décidé de valider certaines des innovations sur un lanceur aux caractéristiques intermédiaires : le R-3A est en fait un R-2 avec des réservoirs intégraux et sans dérive ce qui fait passer sa portée à 935 km. Le R-3A doit voler en 1951 tandis que le R-3 ne peut être lancé au plus tôt qu’en 1952. Alors que les travaux sur le R-3A avancent selon le planning prévu, Glouchko est bloqué dans le développement du propulseur RD-110 de 120 tonnes de poussée qui doit propulser la R-3 : le nouveau mélange d’ergols est plus efficace mais nécessite plus de pression dans la chambre de combustion nécessitant d’épaissir les parois, qui deviennent du coup plus difficiles à refroidir. Fin 1951, ne parvenant pas à régler ce problème, Glouchko arrête temporairement ses travaux sur le moteur.

Korolev s’est engagé à développer le missile R-3 qui constitue une priorité aux yeux des militaires, mais celui-ci ne peut pas être développé dans les délais compte tenu des difficultés rencontrées par Glouchko. Il décide pour faire patienter ses donneurs d’ordres d’améliorer les caractéristiques du démonstrateur R3-A et d’en faire un missile à part entière, le R-5 capable de placer une charge explosive d’une tonne à une distance de 1 200 km. Deux séries de tests réalisés entre avril et décembre 1953 confirment le fonctionnement du missile et sa relative fiabilité (2 échecs pour 13 tirs). Le missile entrera en production peu après. le R-5 est également le premier missile à avoir la capacité de lancer une arme nucléaire. Le missile subit un certain nombre de modifications pour pouvoir emporter la nouvelle arme au cours de l’année 1954. Après une campagne de tests de 17 tirs et 4 tirs de qualification, un essai réel du missile rebaptisé R-5M, baptisé “opération Baïkal”, est effectué le 2 février 1956 depuis la base de lancement de Kapoustine Iar. Le missile remplit parfaitement son office et la charge nucléaire explose sur la cible visée : pour Korolev et ses collaborateurs c’est un moment de triomphe. Ce succès lève les doutes que beaucoup de dirigeants politiques et militaires avaient vis-à-vis des travaux de Korolev. Désormais ils ne ménageront plus leur appui aux travaux sur les missiles. Korolev et ses principaux collaborateurs se voient décerner en avril 1956 le titre de Héros du travail socialiste la plus haute récompense de l’Union soviétique.

Le missile de croisière constitue une solution de rechange au missile balistique. À la fin des années 1940, l’institut de recherche NII-1 dirigé par Mstislav Keldych bute sur des difficultés insurmontables dans sa tentative de développer le bombardier suborbital Silbervogel allemand de Eugen Sänger. Fin 1950, Keldych redirige ses travaux sur un projet plus modeste, utilisant des solutions techniques déjà testées : un missile de croisière intercontinental utilisant un premier étage propulsé par le moteur RD-100 du missile R-1 puis un couple de statoréacteurs permettant d’amener une tête nucléaire de 3 tonnes à une distance d’environ 7 000 km. À cette époque l’institut de recherche sur la propulsion des avions, le TsIAM, a effectué des tests poussés sur les statoréacteurs ayant une poussée de 21 tonnes capable d’aller jusqu’à Mach 4. Mais ce projet rencontre également des difficultés dans la mise au point de la motorisation. Au début des années 1950, les responsables soviétiques semblent pencher à la lumière des développements sur le R-3 pour le missile balistique. Néanmoins le développement des deux missiles continuera d’être financé jusqu’à la fin des années 1950.

Korolev a décidé de se concentrer sur la conception du missile balistique intercontinental que souhaitent les dirigeants soviétiques sans passer par la mise au point de missiles à portée intermédiaire. Le missile doit être capable de transporter une bombe H de 5 tonnes sur 8 000 km. En 1953 les dirigeants soviétiques donnent leur accord pour le développement de la R-7 Semiorka et Korolev sous-traite le développement des missiles de portée intermédiaire à un de ses adjoints, Mikhail Yanguel.

Pour propulser le R-7, Glouchko choisit de développer une version pratiquement 10 fois plus puissante (65 tonnes de poussée) du moteur-fusée ED-140. Mais la mise au point du moteur qui sera baptisé RD 105/RD-106 se heurte de nouveau à des problèmes d’instabilité de combustion. Par ailleurs la masse de la tête nucléaire que doit transporter par le missile s’est accrue pour atteindre 5,4 tonnes ce qui nécessite d’accroître les performances du système de propulsion. Le missile doit être opérationnel en 1956 ; Glouchko, pour contourner le problème créé par la taille de la chambre de combustion, décide de développer le moteur RD 107/RD-108 comportant quatre chambres de combustion et quatre tuyères alimentées par une turbopompe commune. Cette solution toutefois accroît la complexité du missile qui comportera pas moins de 20 ensembles chambres de combustion/tuyères et 12 moteurs-verniers.

Pour lancer un satellite dans l’espace, Korolev doit convaincre les membres du parti ainsi que les militaires, qui sont sceptiques. L’objectif de Korolev est purement scientifique mais pour obtenir un accord, il trouve des arguments susceptibles de plaire aux militaires (forte charge utile et grande portée), et aux politiques (propagande de la réussite technique soviétique face aux États-Unis) voire stratégique (développements de satellite espion). Après de nombreux échecs, dus successivement à des fuites de carburant, à des allumages tardifs ou prématurés d’un moteur, à un mauvais calcul de trajectoire ou aux vibrations de la fusée lors de son ascension, Korolev réussit un lancement. Il en informe ses supérieurs haut placés, et obtient auprès des dirigeants (politiques et militaires) du programme spatial soviétique l’autorisation d’effectuer un autre lancement, afin de confirmer la fiabilité de la R7 et permettre la mise en orbite d’un satellite. Korolev qui suit l’avancée des travaux des Américains décide de gagner du temps. La charge utile initialement prévue est abandonnée (elle sera lancée dans le cadre de la mission Spoutnik 3) pour laisser place à un petit satellite à la masse et à l’équipement scientifique minimal : un émetteur radio juste capable de lancer des signaux audibles autour de la Terre pendant quelques jours.

Le , une fusée R-7 lance le premier satellite artificiel dans l’espace, le Spoutnik-1, qui après débat, a pris la forme d’une sphère selon le vœu de Korolev. À la suite du succès de Spoutnik 1, Korolev accorde des congés à tous ses responsables qui n’avaient pas pris un seul jour de vacances depuis plusieurs années. Le vol de Spoutnik 1 a un retentissement mondial auquel les dirigeants de l’Union soviétique ne s’attendaient pas. Nikita Khrouchtchev décide de faire des succès soviétiques dans le domaine de l’astronautique un des piliers de la propagande du régime soviétique. Quelques jours après le lancement de Spoutnik 1, Khrouchtchev convoque Korolev pour avoir des détails sur le déroulement du vol. Il lui demande incidemment si son équipe peut réaliser une nouvelle mission pour marquer avec éclat le quarantième anniversaire de la Révolution d’Octobre, qui doit avoir lieu le soit dans seulement un mois. Korolev répond que ses équipes peuvent à coup sûr placer en orbite à cette date un chien. Krouchtchev demande à Korolev de réaliser cette mission en lui donnant pour consigne impérative de respecter la date de lancement visée, mais en lui accordant une priorité absolue pour tous les aspects logistiques. La décision est officialisée le 12 octobre. Korolev fait rappeler en urgence ses ingénieurs partis en congé pour travailler sur la nouvelle mission qui doit être lancée dans quatre semaines. Les dirigeants américains, poussés par leur opinion publique et désireux de démontrer leur supériorité, décident d’investir massivement dans le programme spatial, déclenchant une course à l’espace entre l’Union soviétique et les États-Unis qui va constituer le cadre de travail de Korolev jusqu’à la fin de sa vie.

Un satellite relativement sophistiqué, baptisé objet D et pouvant emporter à son bord un être vivant, était à l’époque à l’étude, mais il ne pouvait être prêt avant décembre ; cet engin spatial sera lancé dans le cadre de la mission Spoutnik 3. Pour respecter l’échéance imposée, un nouvel engin spatial, moins sophistiqué, est conçu à la hâte. En conséquence, Spoutnik 2 a été réalisé dans l’urgence, la plupart des éléments du vaisseau étant construits à partir de croquis approximatifs, sans essais préalables. En plus de sa mission principale – envoyer un être vivant dans l’espace – Spoutnik 2 emporte une série d’instruments scientifiques, notamment des spectromètres pour étudier les radiations solaires et les rayons cosmiques.

Le 3 novembre 1957, il envoie le premier animal terrestre dans l’espace, une chienne nommée Laïka. Elle y reste 6 heures, mais décède d’hyperthermie, le système de régulation de température de sa capsule étant tombé en panne.

Dès 1955, alors que le la R-7 Semiorka est encore en cours de mise au point, Korolev envisage de lancer une sonde spatiale vers la Lune avec cette fusée. Selon ses calculs, il suffit d’ajouter un étage supplémentaire au missile pour pouvoir lancer un engin spatial de quelques centaines de kilogrammes vers notre satellite naturel. Korolev adresse à l’Académie des sciences d’URSS une proposition de plan d’exploration de la Lune en avril 1957. L’Académie y répond favorablement. Après le succès retentissant de Spoutnik 1, Korolev crée au sein de l’OKB-1, trois nouveaux bureaux d’études dédiés respectivement aux satellites de télécommunications, aux missions habitées et aux sondes lunaires. Cette dernière structure est placée sous la responsabilité de Mikhail Tikhonravov et de Gleb Maximov. Par ailleurs un programme comportant une série de missions lunaires avec des difficultés croissantes est élaboré par l’académicien Mstislav Keldych. Ce plan prévoit :

  • un premier vol (Ye-1) consistant à s’écraser sur la Lune
  • une mission de photographie de la face cachée de la Lune (Ye-3)
  • la troisième mission (Ye-4) proposée par l’académicien Zeldovich consiste à faire exploser une bombe atomique à la surface de la Lune. Cette proposition est abandonnée après évaluation des risques en cas d’échec et de l’impact négatif sur la communauté scientifique.
  • Ye-5 consiste à effectuer un relevé photographique détaillé de la surface de la Lune
  • Ye-6 doit couronner le programme avec un atterrissage en douceur et la transmission d’un panorama lunaire.

Cette liste est soumise à l’Académie des sciences et au dirigeant soviétique Khrouchtchev. Un décret formalise l’accord de ces autorités le 20 mars 1958. Korolev fait développer le moteur du troisième étage par Sémion Kosberg, un nouvel arrivant dans le domaine des fusées transfuge de l’aviation car le fournisseur de moteurs attitré de Korolev, Valentin Glouchko, ne peut fournir dans les délais l’étage souhaité. L’ensemble formé par la Semiorka et le troisième étage “Bloc Ye” reçoit le nom de code 8k72 mais est baptisée Luna dans les communiqués officiels.

Six missions destinées à s’écraser sur la Lune, dont deux réussies, sont lancées en 1958 et 1959 en utilisant le modèle de sonde Ye-1. Au printemps 1958, Korolev sait que les États-Unis, avec lesquels l’Union soviétique a entamé une course de prestige, préparent l’envoi d’une sonde vers la Lune au cours de l’été dans le cadre du programme Pioneer. Bien que le troisième étage, qui n’a jamais encore volé, ne soit pas parfaitement au point, Korolev fait préparer un lancement d’une sonde lunaire Ye-1 à la date prévue pour le lancement de la sonde américaine ; la trajectoire calculée par l’équipe soviétique est plus courte et la sonde de Korolev est assurée d’arriver avant la sonde américaine. Pour ce lancement comme pour tous les suivants, les américains annoncent à l’avance la date tandis que les soviétiques n’officialisent leurs lancements qu’après coup et seulement s’ils sont réussis. Les échecs soviétiques sont ainsi dissimulés accentuant l’impression de domination de l’astronautique soviétique durant les premières années de l’ère spatiale. Le 17 août, jour du lancement, le lanceur américain explose en vol. Korelev décide de reporter son propre lancement pour améliorer la fiabilité de son lanceur. Le premier lancement de la sonde lunaire soviétique a lieu le 23 septembre mais il échoue. Un problème de résonance entraîne la désintégration du lanceur en cours de vol. Le jour de la deuxième tentative américaine, le 11 octobre, Korolev dispose d’un lanceur également prêt. Le troisième étage du lanceur de la sonde américaine Pioneer 1 est à nouveau victime d’une défaillance mais la fusée soviétique qui est lancée dans la foulée est de nouveau victime du phénomène de résonance. Le problème est corrigé et une troisième tentative est effectuée le 4 décembre. Le lancement échoue à nouveau à la suite d’une défaillance de la turbopompe injectant l’oxygène dans la chambre de combustion du troisième étage. Les américains sont aussi peu chanceux avec leur lanceur puisque leurs deux tentatives des 8 novembre et 6 décembre échouent également.

Lors de la quatrième tentative, le , le lanceur fonctionne jusqu’au bout et la sonde parvient enfin à s’arracher à l’orbite terrestre. Mais la trajectoire suivie n’est pas parfaite car l’arrêt du second étage, qui est radio-commandé, est déclenché trop tard. La sonde qui devait s’écraser sur la Lune passe à 5965 km de distance et se trouve placée sur une orbite héliocentrique. C’est donc un demi-succès pour l’équipe de Korolev mais les autorités soviétiques s’empressent néanmoins d’annoncer que la sonde a parfaitement rempli ses objectifs en réalisant trois premières : s’arracher à l’orbite terrestre, survoler à faible distance la Lune, et se placer sur une orbite héliocentrique. La sonde est sur le moment baptisée Mechta (rêve en russe) mais sera renommée un an plus tard Luna 1. Ses instruments permettent de découvrir le vent solaire. Aucun champ magnétique significatif d’origine lunaire n’est mis en évidence. La sonde lunaire soviétique est légèrement modifiée (version Ye-1A) et est lancée le 18 juin 1959 mais le lanceur est victime d’une défaillance d’un de ses gyroscopes. Le le sixième tir qui emporte Luna 2 est un succès total. Pour la première fois, un engin construit par l’homme atteint la surface d’un autre corps céleste. La sonde s’écrase à l’est de la Mare Imbrium. Tous les instruments scientifiques ont parfaitement fonctionné et l’absence de champ magnétique lunaire significatif est confirmé.

C’est également lui qui, le 12 avril 1961, via le programme Vostok, permet à Youri Gagarine de devenir le premier homme dans l’espace.

Dès 1957, Korolev étudie les plans d’un lanceur capable de lancer une mission habitée autour de la Lune. Malgré le désintérêt des militaires soviétiques, il demande en 1959 à un de ses collaborateurs de travailler sur l’avant-projet d’un vaisseau spatial habité, baptisé Sever (Nord) capable d’effectuer le tour de la Lune. Fin 1959, il parvient à attirer l’attention du dirigeant soviétique de l’époque Nikita Khrouchtchev sur le sujet en lui faisant part des premiers travaux de la NASA sur un lanceur lourd qui deviendra la fusée Saturn : il obtient ainsi le feu vert pour réaliser une étude de la fusée N-1. Celle-ci n’a toutefois pas de mission définie. En avril 1962, les constructeurs astronautiques ainsi que les principaux décideurs soviétiques se réunissent à Pitsounda dans la villégiature du dirigeant de l’Union soviétique, Nikita Khrouchtchev pour définir la stratégie spatiale soviétique. Au grand dépit de Korolev, son principal rival Vladimir Tchelomeï, qui a su s’attirer l’appui de Khrouchtchev et, contrairement à Korolev, celui des militaires, obtient le feu vert pour son projet de lanceur lourd UR500 rebaptisé par la suite Proton. Celui-ci doit, entre autres, être utilisé pour le lancement d’un vaisseau spatial habité chargé d’une mission circumlunaire.

Fin 1962, Korolev travaille sur le successeur de sa capsule spatiale Vostok qui ne peut transporter qu’un seul cosmonaute et a des capacités de manœuvre limitées. Le nouvel engin doit pouvoir changer d’orbite, transporter plusieurs cosmonautes, effectuer des vols de longue durée, s’amarrer à un autre vaisseau et permettre des sorties extravéhiculaires ; il doit enfin pouvoir effectuer une rentrée atmosphérique après une mission lunaire c’est-à-dire à la deuxième vitesse cosmique (11 km/s) beaucoup plus élevée que la vitesse de rentrée d’un vaisseau ayant effectué une mission en orbite basse. Pour lancer le futur vaisseau, Korolev choisit de combiner les premiers étages renforcés de la fusée Vostok, utilisée pour mettre en orbite les premiers vaisseaux habités soviétiques, et le puissant troisième étage de la fusée Molnia utilisée pour lancer les sondes spatiales. Le lanceur résultant est capable de placer 6,5 tonnes en orbite basse. Pour contrer le projet de son rival Tchelomeï, il propose une mission circumlunaire utilisant le nouveau vaisseau spatial baptisé 7K, qui doit emporter un équipage de 2 personnes ; deux autres vaisseaux sont chargés, après avoir été lancés indépendamment, de s’amarrer au premier vaisseau en formant un ensemble spatial baptisé Soyouz (Union). Le deuxième vaisseau 9K (ou Soyouz B) est chargé d’accélérer le train spatial tandis que le 11 K emporte du carburant supplémentaire. Ce projet, bien que concurrent de celui de Tchelomeï, reçoit, de manière paradoxale, en mars 1963 l’aval du Conseil Spatial chargé de coordonner la politique spatiale soviétique.

Courant 1963, le bureau d’étude de Korolev avance sur la conception de Soyouz sans toutefois disposer de budget. Les principales caractéristiques du vaisseau 7K, tel qu’il sera développé par la suite, sont figées à cette époque. Le vaisseau comporte deux modules habitables dont un seul, le module de descente, revient sur Terre tandis que le module orbital est utilisé uniquement en orbite. Le 7K comporte un troisième module qui regroupe propulsion et panneaux solaires. Le premier exemplaire du nouveau lanceur, qui doit placer en orbite chacun des éléments du train spatial et qui est également baptisé Soyouz, est lancé avec succès le 16 novembre 1963. La fusée entame une longue carrière de lanceur qui se poursuit toujours en 2011 : il n’évoluera que faiblement au fil des décennies avec la version Soyouz-U (6,8 tonnes) en 1973 et la version Soyuz-FG qui peut placer 7,1 tonnes en orbite basse à compter de 2002. Fin 1963, Korolev reçoit la commande de deux versions militaires de son nouveau vaisseau 7K : un vaisseau de reconnaissance Soyouz-R et un intercepteur de satellites Soyouz-P. Il va en fait utiliser les moyens financiers fournis par cette commande pour développer la version civile. À la même époque, Korolev choisit un système de rendez-vous automatique pour son futur vaisseau à l’opposé de la solution retenue par la NASA qui s’en remet à ses astronautes pour les manœuvres de rendez-vous. Ce choix résulte en partie de la formation des ingénieurs des bureaux d’étude soviétiques qui viennent du monde des missiles et connaissent mal l’aéronautique ; mais cette option découle également de la volonté des autorités soviétiques, réticentes pour des raisons idéologiques à donner trop d’autonomie aux cosmonautes. Mais le rendez-vous automatique va contribuer à handicaper le projet en imposant une grande complexité technique dans un domaine, l’électronique, qui constitue un point faible de l’industrie et de la recherche soviétique.

Jusque-là l’astronautique soviétique n’avait pas de véritable projet d’atterrissage sur la Lune mais fin 1964 les dirigeants soviétiques, constatant les progrès de la NASA, décident de relever le défi du programme Apollo. Korolev a profondément remanié le scénario d’atterrissage sur la Lune qu’il avait communiqué précédemment aux responsables soviétiques et qui impliquait jusque là le lancement de 3 fusées géantes N-1. La solution proposée reprend la formule du rendez-vous en orbite lunaire retenue par la NASA : elle repose sur l’envoi par une unique fusée N-1 de deux vaisseaux formant le train spatial L3 dont l’un, le vaisseau orbital LOK (Lunniy Orbitalny Korabl), reste en orbite tandis que le second, le module lunaire LK (Lunniy Korabl), se pose sur la Lune. Le vaisseau LOK est en fait un Soyouz 7K avec un bouclier thermique et un système de propulsion renforcés ce qui porte son poids à 9,4 tonnes. Le scénario présenté est accepté par les dirigeants soviétiques et Korolev reçoit la commande en janvier 1965 de 16 ensembles L3/N-1. Les premiers vols doivent avoir lieu en 1966 avec un atterrissage fin 1968.

Malgré le lancement officiel du programme d’atterrissage sur la Lune, le projet de mission circumlunaire de Tchelomeï est maintenu car il s’agit d’une opération de prestige programmée pour mai ou octobre 1967 qui sont deux dates symboliques en Union soviétique car associées cette année-là au cinquantenaire de la Révolution d’Octobre. Ce programme doit permettre de marquer des points auprès de l’opinion internationale en attendant le véritable débarquement lunaire. Mais Tchelomeï, qui a perdu son principal soutien avec la chute de Khrouchtchev remplacé par Léonid Brejnev, est en difficulté car le vaisseau LK1 ne pourra manifestement pas être prêt pour l’échéance fixée. Le lanceur UR-500 a par contre brillamment réussi son premier essai et Korolev propose aux autorités d’associer le nouveau lanceur qui peut placer 20 tonnes en orbite basse avec un vaisseau développé par ses bureaux d’études. Celui-ci est en fait un vaisseau Soyouz 7K dépourvu de module orbital pour réduire sa masse et associé à un étage de fusée Bloc D qui doit le propulser sur une trajectoire lunaire. Le nouveau scénario est accepté par l’ensemble des décideurs en octobre 1965. Mais en fait Korolev a bluffé et le train spatial dit L1 constitué par le Bloc D et le vaisseau est trop lourd de 0,5 tonne. Pour contourner le problème, il remanie le scénario de la mission circumlunaire : l’équipage doit être lancé dans un vaisseau Soyouz 7K classique par une fusée Soyouz tandis que le train L1 est lancé de son côté sans équipage par une fusée UR 500/Proton. Un rendez-vous spatial est réalisé sans amarrage (il n’y a pas de pièce d’amarrage sur le L1) puis l’équipage passe dans le vaisseau du train L1 en effectuant une sortie extravéhiculaire. Korolev est désormais aux commandes de tous les programmes spatiaux habités mais le travail restant à effectuer, qui nécessite la mise au point de trois versions du vaisseau Soyouz, du lanceur N-1 et du module lunaire LK, rend la tenue des échéances peu réaliste.

Korolev avait de graves problèmes de santé depuis plusieurs années. Il souffrait notamment d’hémorragies intestinales à l’origine de douleurs insupportables. Ses problèmes étaient aggravés par la durée de ses journées de travail – il pouvait travailler 18 heures par jour pendant plusieurs semaines sans s’arrêter – et le stress intense lié à son rôle pivot dans l’ensemble des projets spatiaux soviétiques et à la désorganisation de l’industrie spatiale, source de nombreux conflits. Au cours de l’année 1965, sa santé se détériore nettement. Il se plaint de baisses de tension, de maux de têtes. Il perd son acuité auditive et des problèmes cardiaques se développent. Il s’épuise à tenter de régler les problèmes qui se multiplient dans un environnement de plus en plus hostile. Ses rapports professionnels sont de plus en plus conflictuels même avec ses collaborateurs les plus proches : fin 1965, il envisage très sérieusement de donner sa démission. À la suite d’examens effectués en décembre 1965, les médecins décident de l’opérer pour lui retirer un polype intestinal. Il s’agit d’une opération bénigne et Korolev a prévu après l’opération une petite fête chez lui, le 14 janvier pour ses 59 ans. Le 11 janvier, Korolev entre en salle d’opération. Boris Petrovski, ministre de la santé d’Union soviétique mais également chirurgien cardiaque, opère en personne. Mais l’opération ne se passe pas comme prévu. Korolev a eu la mâchoire brisée durant son séjour au goulag et les chirurgiens doivent procéder à une anesthésie générale malgré sa mauvaise condition cardiaque. Son cou très court ne permet pas de l’intuber et il faut effectuer une trachéotomie pour insérer le tube respiratoire. L’ablation du polype déclenche une hémorragie que l’équipe médicale n’arrive pas à arrêter. Les chirurgiens découvrent en l’opérant un cancer au niveau de l’anus et de la paroi pelvienne et doivent procéder à une ouverture de l’abdomen non planifiée pour retirer la tumeur qui est grosse comme le poing. Devant l’ampleur du problème, Alexandre Vichnevski, chirurgien spécialisé dans les cancers et ami de Korolev, est appelé en urgence mais il est trop tard. L’opération a duré plus de 4 heures et le cœur de Korolev lâche.

Korolev a été marié à Xenia Vincentini, qui leur donne une fille, puis ils ont divorcé, il a alors pu épouser Nina Ivanovna Kotenkova, interprète de profession.

De son vivant, Korolev a été nommé deux fois Héros du Travail socialiste (1956 et 1961). À titre posthume, il a reçu en 1971 le prix Lénine et trois ordres de Lénine. Il est élu à l’Académie des Sciences de l’URSS en 1958 bien qu’il n’ait pas les compétences scientifiques théoriquement exigées. En 1996, la ville de Kalinigrad dans la banlieue de Moscou, qui héberge depuis toujours RKK Energia, principal établissement de l’industrie spatiale mise en place par Korolev, est rebaptisée en son honneur Korolev. Son nom a été donné à une rue de Moscou (Ulitsa Akademika Korolyova) ainsi qu’à plusieurs formations planétaires et objets célestes : le cratère Korolev sur la face cachée de la Lune, le cratère Korolev sur Mars et l’astéroïde 1855 Korolev.

L’activité spatiale très proche de celles des missiles relève du secret absolu dans le régime autoritaire soviétique. Le rôle de Korolev, comme celui des autres responsables du programme spatial soviétique était tenu secret, tout comme l’organisation de l’industrie spatiale et l’emplacement des bases de lancement. Jusqu’à sa mort, le nom de Korolev n’apparaît dans aucun communiqué officiel. Le KGB présente à la presse occidentale Leonid Sedov, physicien membre de l’Académie des sciences de Russie, comme “le père du Spoutnik”.

Source : Wikipédia France

PROGRAMME APOLLO

Mentionné sur Tomorrow

Le programme Apollo est le programme spatial de la NASA mené durant la période 1961 – 1975 qui a permis aux États-Unis d’envoyer pour la première fois des hommes sur la Lune. Il a été lancé par John F. Kennedy le , essentiellement pour reconquérir le prestige américain mis à mal par les succès de l’astronautique soviétique, à une époque où la guerre froide entre les deux superpuissances battait son plein.

Le programme avait pour objectif de poser un homme sur la Lune avant la fin de la décennie. Le , cet objectif était atteint par deux des trois membres d’équipage de la mission Apollo 11, Neil Armstrong et Buzz Aldrin. Cinq autres missions se sont posées par la suite sur d’autres sites lunaires et y ont séjourné jusqu’à trois jours. Ces expéditions ont permis de rapporter 382 kilogrammes de roche lunaire et de mettre en place plusieurs batteries d’instruments scientifiques. Les astronautes ont effectué des observations in situ au cours d’excursions sur le sol lunaire d’une durée pouvant atteindre 8 heures, assistés à partir d’Apollo 15 par un véhicule tout-terrain, le rover lunaire.

Aucun vol orbital américain n’avait encore été réalisé en mai 1961. Pour remplir l’objectif fixé par le président, la NASA a lancé plusieurs programmes destinés à préparer les futures expéditions lunaires : le programme Gemini pour mettre au point les techniques de vol spatial et des programmes de reconnaissance (programme Surveyor, Ranger…) pour, entre autres, cartographier les zones d’atterrissage et déterminer la consistance du sol lunaire. Pour atteindre la Lune, les responsables ont fini par se rallier à la méthode audacieuse du rendez-vous en orbite lunaire, qui nécessitait de disposer de deux vaisseaux spatiaux dont le module lunaire destiné à l’atterrissage sur la Lune. La fusée géante de 3 000 tonnes Saturn V, capable de placer en orbite basse 118 tonnes, a été développée pour lancer les véhicules de l’expédition lunaire. Le programme drainera un budget considérable (163 milliards de dollars US actuels) et mobilisera jusqu’à 400 000 personnes. Deux accidents graves sont survenus au cours du projet : l’incendie au sol du vaisseau spatial Apollo 1 dont l’équipage a péri brûlé et qui a entraîné un report de près de deux ans du calendrier et l’explosion d’un réservoir à oxygène du vaisseau spatial Apollo 13 dont l’équipage a survécu en utilisant le module lunaire comme vaisseau de secours.

Les missions lunaires ont permis d’avoir une meilleure connaissance de notre satellite naturel. Le programme Apollo a favorisé la diffusion d’innovations dans le domaine des sciences des matériaux et a contribué à l’essor de l’informatique ainsi que des méthodes de gestion de projet et de test. Les photos de la Terre, monde multicolore isolé dans un espace hostile, ainsi que celles de la Lune, monde gris et mort, ont favorisé une prise de conscience mondiale sur le caractère exceptionnel et fragile de notre planète. Le programme est à l’origine d’une scission dans la communauté scientifique et parmi les décideurs entre partisans d’une exploration robotique jugée plus efficace et ceux pour qui l’exploration humaine a une forte valeur symbolique, qui justifie son surcoût.

Durant les années 1950, la guerre froide bat son plein entre les États-Unis et l’Union soviétique, les deux superpuissances de l’époque. Celle-ci se traduit par des affrontements militaires indirects (guerre de Corée), et une course aux armements qui porte notamment sur le développement de missiles intercontinentaux porteurs de têtes militaires nucléaires capables d’atteindre le territoire national de l’adversaire. Les deux pays développent ces fusées en s’appuyant largement sur les travaux et l’expertise de savants et techniciens allemands qui ont mis au point le premier engin de ce type lors de la Seconde Guerre mondiale, la fusée V2. L’Union soviétique prend une certaine avance en réussissant en 1956 le premier tir d’un missile intercontinental, la R-7 Semiorka, ancêtre direct de la fusée Soyouz. Cette fusée de 267 tonnes est particulièrement puissante car elle doit emporter une bombe A pesant 5 tonnes. Les missiles américains à longue portée, développés plus tardivement, car conçus pour lancer des bombes H techniquement plus avancées et beaucoup plus légères (1,5 tonne), sont de taille plus réduite et sont encore en phase de mise au point à la fin des années 1950.

En juillet 1955, les États-Unis et l’URSS annoncent, chacun de leur côté, qu’ils lanceront un satellite artificiel dans le cadre des travaux scientifiques prévus pour l’Année géophysique internationale (juillet 1957 – décembre 1958). Début 1956, le concepteur de la Semiorka, Sergueï Korolev, réussit à convaincre les dirigeants soviétiques d’utiliser son missile comme lanceur spatial. À la surprise générale, le , l’Union soviétique est la première à placer en orbite le satellite Spoutnik 1. L’opinion internationale est fascinée par cet événement qui semble présager le début d’une nouvelle ère technique et scientifique. C’est un choc pour les responsables et l’opinion publique américains, jusqu’alors persuadés de leur supériorité technique. Les dirigeants soviétiques, d’abord surpris par l’impact de ce lancement, ne tardent pas à comprendre le prestige international que le régime peut retirer des succès de sa politique spatiale ; ils décident de se lancer dans un programme ambitieux.

À la même époque, le programme Vanguard, pendant américain du programme spatial russe lancé tardivement et trop ambitieux, enchaîne les échecs. L’équipe de Wernher von Braun parvient finalement à lancer le premier satellite américain, Explorer 1, le 1er grâce au lanceur Juno I improvisé à partir d’un missile balistique Redstone. Mais la petite taille de la charge utile comparée à celle de Spoutnik semble confirmer l’avance soviétique. Bien que réticent à investir massivement dans le spatial civil, le président américain Dwight D. Eisenhower décide le de la création d’une agence spatiale civile, la NASA, qui doit permettre de fédérer les efforts américains pour mieux contrer les réussites soviétiques : la course à l’espace est lancée. La même année voit le début du programme Mercury qui doit permettre la mise en orbite des premières missions habitées américaines.

Mais les Soviétiques, qui disposent d’une avance importante et d’une fusée fiable pouvant emporter une grosse charge utile, continuent au cours des années suivantes de multiplier les premières : premier être vivant placé en orbite avec la chienne Laïka (Spoutnik 2), premier satellite à échapper à l’attraction terrestre (Luna 1), premier satellite à s’écraser sur la Lune (Luna 2), première photo de la face cachée de la Lune (Luna 3), premier être vivant à revenir vivant après un séjour dans l’espace (les chiens Belka et Strelka de Spoutnik 5), premier survol de Vénus (Venera 1).

Lorsqu’il arrive au pouvoir en janvier 1961, le président américain John F. Kennedy est, comme son prédécesseur, peu enclin à donner des moyens importants au programme spatial civil. Mais le lancement du premier homme dans l’espace par les Soviétiques (Youri Gagarine, 12 avril 1961) le convainc de la nécessité de disposer d’un programme spatial ambitieux pour récupérer le prestige international perdu. L’échec du débarquement de la baie des Cochons (avril 1961) destiné à renverser le régime de Fidel Castro installé à Cuba, qui écorne un peu plus l’image des États-Unis auprès des autres nations, contribue également sans doute à son changement de position.

John Kennedy demande à son vice-président Lyndon B. Johnson de lui désigner un objectif qui permettrait aux États-Unis de reprendre le leadership à l’Union soviétique. Parmi les pistes évoquées figurent la création d’un laboratoire spatial dans l’espace et un simple survol lunaire. Le vice-président, qui est un ardent supporter du programme spatial, lui répond que la recherche et l’industrie américaine ont la capacité d’envoyer une mission habitée sur la Lune et lui recommande de retenir cet objectif. Le , le président annonce devant le Congrès des États-Unis, lors du Special Message to the Congress on Urgent National Needs, le lancement d’un programme qui doit amener des astronautes américains sur le sol lunaire “avant la fin de la décennie”. Il confirme sa décision dans un autre discours resté célèbre, we choose to go to the Moon”, le 12 septembre 1962.

La proposition du président reçoit un soutien enthousiaste des élus de tous les horizons politiques ainsi que de l’opinion publique, traumatisés par les succès de l’astronautique soviétique. Le premier budget du nouveau programme baptisé Apollo – nom choisi par Abe Silverstein à l’époque directeur des vols spatiaux habités – est voté à l’unanimité par le Sénat américain. Les fonds alloués à la NASA vont passer de 400 millions de dollars en 1960 à 5,9 milliards de dollars en 1966, année de son budget le plus conséquent (environ 45 milliards valeur 2015). La NASA, grâce aux qualités manœuvrières de son administrateur James E. Webb, un vieux routier de la politique, put obtenir chaque année les fonds qu’elle souhaitait jusqu’au débarquement sur la Lune, même lorsque le soutien des élus a commencé à faiblir après 1963. James Webb a su en particulier s’assurer un appui solide auprès du président Lyndon B. Johnson qui avait succédé au président Kennedy assassiné en 1963.

Dès 1959 des études sont lancées au sein de l’agence spatiale américaine dans une perspective à long terme, sur la manière de poser un engin habité sur la Lune. Trois scénarios principaux se dégagent :

  • l’envoi direct d’un vaisseau sur la Lune (“Direct Ascent”) : une fusée de forte puissance, de type Nova, envoie le vaisseau complet ; celui-ci atterrit sur la Lune puis en décolle avant de retourner sur la Terre ;
  • le rendez-vous orbital autour de la Terre (EOR pour “Earth-Orbit Rendez-vous”) : pour limiter les risques et le coût de développement de la fusée Nova, les composants du vaisseau sont envoyés en orbite terrestre par deux ou plusieurs fusées moins puissantes. Ces différents éléments sont assemblés en orbite en utilisant éventuellement une station spatiale comme base arrière. Le déroulement du vol du vaisseau, par la suite, est similaire à celui du premier scénario ;
  • le rendez-vous en orbite lunaire (LOR pour “Lunar Orbital Rendez-vous”) : une seule fusée est requise mais le vaisseau spatial comporte deux sous-ensembles qui se séparent une fois que l’orbite lunaire est atteinte. Un module dit “lunaire” se pose sur la Lune avec deux des trois astronautes et en décolle pour ramener les astronautes jusqu’au module dit “de commande”, resté en orbite autour de la Lune, qui prend en charge le retour des astronautes vers la Terre. Cette solution permet d’économiser du poids par rapport aux deux autres scénarios (beaucoup moins de combustible est nécessaire pour faire atterrir puis décoller les hommes sur la Lune) et permet de concevoir un vaisseau destiné à sa mission proprement lunaire. En outre, la fusée à développer est moins puissante que celle requise par le premier scénario.

Lorsque le président américain John Kennedy donne à la NASA, en 1961, l’objectif de faire atterrir des hommes sur la Lune avant la fin de la décennie, l’évaluation de ces trois méthodes est encore peu avancée. L’agence spatiale manque d’éléments : elle n’a pas encore réalisé un seul véritable vol spatial habité (le premier vol orbital de la capsule Mercury n’a lieu qu’en septembre 1961). L’agence spatiale ne peut évaluer l’ampleur des difficultés soulevées par les rendez-vous entre engins spatiaux et elle ne maîtrise pas l’aptitude des astronautes à supporter de longs séjours dans l’espace et à y travailler ; ses lanceurs ont essuyé par ailleurs une série d’échecs qui l’incite à la prudence dans ses choix techniques.

Aussi, bien que le choix de la méthode conditionne les caractéristiques des véhicules spatiaux et des lanceurs à développer et que tout retard pris dans cette décision pèse sur l’échéance, la NASA va mettre plus d’un an, passé en études et en débats, avant que le scénario du LOR soit finalement retenu.

Au début de cette phase d’étude, la technique du rendez-vous en orbite lunaire (LOR) est la solution qui a le moins d’appui malgré les démonstrations détaillées de John C. Houbolt du Centre de Recherche de Langley, son plus ardent défenseur. Aux yeux de beaucoup de spécialistes et responsables de la NASA, le rendez-vous entre module lunaire et module de commande autour de la lune paraît instinctivement trop risqué : si les modules n’arrivent pas à se rejoindre en orbite lunaire, les astronautes occupant le module lunaire n’ont pas le recours de freiner leur engin pour se laisser redescendre vers la Terre contrairement aux autres scénarios ; ils sont alors condamnés à tourner indéfiniment autour de la Lune. Les avantages du LOR, en particulier le gain sur la masse à placer en orbite, ne sont pas appréciés à leur juste mesure. Toutefois, au fur et à mesure que les autres scénarios sont approfondis, le LOR gagne en crédibilité. Les partisans du vol direct – Max Faget et ses hommes du Centre des Vols Habités se rendent compte de la difficulté de faire atterrir un vaisseau complet sur le sol lunaire accidenté et aux caractéristiques incertaines. Wernher von Braun, qui dirige l’équipe du Centre de vol spatial Marshall qui doit développer le lanceur et est partisan d’un rendez-vous orbital terrestre, finit lui-même par être convaincu que le LOR est le seul scénario qui permettra de respecter l’échéance fixée par le président Kennedy.

Au début de l’été 1962, alors que les principaux responsables de la NASA se sont tous convertis au LOR, ce scénario se heurte au veto de Jerome B. Wiesner, conseiller scientifique du président Kennedy. Le choix du LOR est finalement entériné le . Dès juillet, 11 sociétés aérospatiales américaines sont sollicitées pour la construction du module lunaire sur la base d’un cahier des charges sommaire.

Le 5 mai 1961, quelques jours après le lancement du programme Apollo, l’astronaute Alan Shepard effectue le premier vol spatial américain (mission Mercury 3). En fait, il s’agit d’un simple vol suborbital car la fusée Mercury-Redstone utilisée (il n’y a pas d’autre lanceur disponible) n’a pas une puissance suffisante pour placer en orbite la petite capsule spatiale Mercury d’une masse un peu supérieure à une tonne. Le programme lunaire nécessite de pouvoir placer en orbite basse une charge utile de 120 tonnes. Le changement d’échelle qui en résulte est particulièrement important : la NASA va passer de la fusée de 30 tonnes qui a lancé Alan Shepard aux 3 000 tonnes de Saturn V qui nécessitera de développer des moteurs d’une puissance aujourd’hui inégalée ainsi que des technologies nouvelles comme l’utilisation de l’hydrogène liquide.

Les effectifs affectés au programme spatial civil vont croître en proportion. Entre 1960 et 1963, le nombre d’employés de la NASA passe de 10 000 à 36 000. Pour accueillir ses nouveaux effectifs et disposer d’installations adaptées au programme lunaire, la NASA crée trois nouveaux centres entièrement affectés au programme Apollo aux périmètres précisément délimités :

Le Manned Spacecraft Center (MSC), édifié en 1962 près de Houston au Texas, est destiné à la conception et la qualification des vaisseaux spatiaux (module lunaire et CSM), l’entraînement des astronautes et le suivi des missions à partir de leur décollage. Parmi les installations présentes sur le site, on trouve le centre de contrôle des missions, les simulateurs de vol et des équipements destinés à simuler les conditions spatiales et utilisés pour tester les livraisons des industriels. Le centre est dirigé par Robert Gilruth, ancien ingénieur de la NACA, qui joue un rôle de premier plan pour l’activité des vols habités américains depuis 1958. Contrairement aux deux autres établissements créés pour le programme Apollo, le MSC est activé dès le programme Gemini. Il emploie en 1964 15 000 personnes dont 10 000 employés de sociétés aérospatiales.

Le Centre de vol spatial Marshall (George C. Marshall Space Flight Center ou MSFC) est une ancienne installation de l’Armée de Terre (Redstone Arsenal) située près de Huntsville dans l’Alabama transférée en 1960 à la NASA avec les spécialistes en majorité allemands de missiles balistiques dirigés par Wernher von Braun qui y travaillaient. Von Braun en restera le responsable jusqu’en 1970. Le centre est spécialisé dans la conception et la qualification des lanceurs de la famille Saturn. On y trouve des bancs d’essais, des bureaux d’étude et des installations d’assemblage. Les premiers exemplaires de la fusée Saturn I y sont construits avant que le reste de la production soit confié à l’industrie. Il emploiera jusqu’à 20 000 personnes.

Le Centre spatial Kennedy (KSC), situé sur l’île Meritt en Floride, est le site d’où sont lancées les fusées géantes du programme Apollo. La NASA qui a besoin d’installations à l’échelle de la fusée Saturn V met en construction en 1963 cette nouvelle base de lancement qui jouxte celle de Cape Canaveral appartenant à l’Armée de l’Air américaine et d’où sont parties, jusqu’alors, toutes les missions habitées et les sondes spatiales de l’agence spatiale. Le centre effectue la qualification de la fusée assemblée (“all up”) et contrôle les opérations sur le lanceur jusqu’à son décollage. Il emploie en 1965 environ 20 000 personnes. Au cœur du centre spatial, le complexe de lancement 39 comporte 2 aires de lancement et un immense bâtiment d’assemblage, le VAB (hauteur 140 mètres), dans lequel plusieurs fusées Saturn V peuvent être préparées en parallèle. Plusieurs plates-formes de lancement mobiles permettent de transporter la fusée Saturn assemblée jusqu’au site de lancement. Le premier lancement depuis le nouveau terrain est celui d’Apollo 4 en 1967. Jusqu’en 2011, le complexe était utilisé pour lancer la navette spatiale américaine.

D’autres établissements de la NASA, jouent un rôle moins direct ou ne consacrent qu’une partie de leur activité au programme Apollo. En 1961, le Centre spatial John C. Stennis est édifié dans l’État du Mississippi. Le nouveau centre dispose de bancs d’essais utilisés pour tester les moteurs-fusées développés pour le programme. L’Ames Research Center est un centre de recherche ancien (1939) situé en Californie dont les souffleries sont utilisées pour mettre au point la forme de la capsule Apollo en vue de sa rentrée dans l’atmosphère terrestre. Le Langley Research Center (1914), situé à Hampton (Virginie) abrite également de nombreuses souffleries. Il a servi jusqu’en 1963 de siège au MSC et continue, par la suite, à abriter certains simulateurs du programme. Le Jet Propulsion Laboratory (1936), près de Los Angeles (Californie), est spécialisé dans le développement des sondes spatiales. C’est dans ce centre que sont conçues les familles de sondes spatiales qui vont permettre de reconnaître l’environnement lunaire (programme Surveyor, etc.).

Les principales entreprises de l’astronautique sont fortement impliquées dans le programme qui se traduit par un accroissement considérable des effectifs – le personnel affecté aux projets de la NASA passe durant cette période de 36 500 à 376 500 – et la construction d’établissements de grande taille. La société californienne North American, avionneur célèbre pour avoir construit les B-25 et le chasseur Mustang durant la Seconde Guerre mondiale, va jouer un rôle central dans le programme. L’arrêt et l’échec de plusieurs projets aéronautiques ont conduit son président à miser sur le développement de l’astronautique. La société s’est déjà distinguée dans le domaine en produisant l’avion fusée X-15. Pour le programme Apollo, la société fournit pratiquement tous les composants sensibles hormis le module lunaire qui est confié à la société Grumman implantée à Bethpage, Long Island (État de New York). La division moteur Rocketdyne de North American fabrique les deux principaux moteurs-fusées les J-2 et F-1 dans l’usine de Canoga Park, tandis que sa division Espace construit le deuxième étage de la Saturn V à Seal Beach et le module de commande et de service Apollo à Downey. L’incendie du vaisseau Apollo 1 et de nombreux problèmes rencontrés dans le développement du programme entraîneront la fusion de North American avec la société Rockwell Standard Corporation en 1967 ; le nouveau groupe développera dans les années 1970-1980 la navette spatiale américaine avant d’être absorbé en 1996 par Boeing. La société McDonnell Douglas construit le troisième étage de la Saturn V à Huntington Beachen Californie tandis que le premier étage est construit dans l’établissement de Michoud (Louisiane) de la NASA par la société Chrysler. Parmi les fournisseurs de premier plan figure le laboratoire des instruments du Massachusetts Institute of Technology (MIT) qui conçoit le système de pilotage et de navigation des deux vaisseaux habités Apollo.

Le projet Apollo a constitué un défi sans précédent sur le plan de la technique et de l’organisation : il fallait mettre au point un lanceur spatial dont le gigantisme générait des problèmes jamais rencontrés jusque-là, deux nouveaux moteurs innovants par leur puissance (F-1) ou leur technologie (J-2), des vaisseaux spatiaux d’une grande complexité avec une exigence de fiabilité élevée (probabilité de perte de l’équipage inférieure à 0,1 %) et un calendrier très tendu (8 ans entre le démarrage du programme Apollo et la date butoir fixée par le président Kennedy pour le premier atterrissage sur la Lune d’une mission habitée). Le programme a connu de nombreux déboires durant la phase de développement qui ont tous été résolus grâce à la mise à disposition de ressources financières exceptionnelles avec un point culminant en 1966 (5,5 % du budget fédéral alloué à la NASA), mais également une mobilisation des acteurs à tous les niveaux et la mise au point de méthodes organisationnelles (planification, gestion de crises, gestion de projet) qui ont fait école par la suite dans le monde de l’entreprise.

La mise au point du moteur F-1, d’architecture conventionnelle mais d’une puissance exceptionnelle (2,5 tonnes d’ergols brûlés par seconde) a été très longue à cause de problèmes d’instabilité au niveau de la chambre de combustion qui n’ont été résolus qu’en combinant études empiriques (comme l’utilisation de petites charges explosives dans la chambre de combustion) et travaux de recherche fondamentale. Le deuxième étage de la fusée Saturn V, qui constituait déjà un tour de force technique du fait de la taille de son réservoir d’hydrogène, a eu beaucoup de mal à faire face à la cure d’amaigrissement imposée par l’augmentation de la charge utile au fur et à mesure de son développement. Mais les difficultés les plus importantes touchèrent les deux modules habités du programme : le CSM et le module lunaire Apollo. Le lancement du développement du module lunaire avait pris un an de retard à cause des atermoiements sur le scénario du débarquement lunaire. Il s’agissait d’un engin entièrement nouveau pour lequel aucune expérience antérieure ne pouvait être utilisée, par ailleurs très complexe du fait de son rôle. Les problèmes multiples – masse nettement supérieure aux prévisions initiales, difficulté de mise au point des logiciels indispensables à la mission, qualité déficiente, motorisation –ont entraîné des retards tellement importants qu’ils mirent à un moment en danger la tenue de l’échéance du programme tout entier.

Les tests prennent une importance considérable dans le cadre du programme puisqu’ils représentent près de 50 % de la charge de travail totale. L’avancée de l’informatique permet pour la première fois dans un programme astronautique, de dérouler automatiquement la séquence des tests et l’enregistrement des mesures de centaines de paramètres (jusqu’à 1000 pour un étage de la fusée Saturn V) ce qui permet aux ingénieurs de se concentrer sur l’interprétation des résultats et réduit la durée des phases de qualification. Chaque étage de la fusée Saturn V subit ainsi quatre séquences de test : un test sur le site du constructeur, deux sur le site du MSFC, avec et sans mise à feu avec des séquences de test par sous-système puis répétition du compte à rebours et un test d’intégration enfin au centre spatial Kennedy une fois la fusée assemblée.

Le premier groupe de 7 astronautes sélectionnés pour le programme Mercury avait été recruté parmi les pilotes d’essais militaires ayant un diplôme de niveau minimum licence dans des domaines touchant à l’ingénierie, âgés de moins de 40 ans et satisfaisant une batterie de critères physiques et psychologiques. Les vagues de recrutement effectuées en 1962 (9 astronautes du groupe 2), 1963 (14 astronautes du groupe 3) et 1966 (15 astronautes du groupe 5) utilisent les mêmes critères de sélection en abaissant l’âge à 35 puis 34 ans, diminuant l’exigence en nombre d’heures de vol et élargissant la gamme des diplômes acceptés. En parallèle, deux groupes d’astronautes scientifiques détenteurs d’un doctorat sont recrutés en 1965 (groupe 4) et 1967 (groupe 6) dont un seul volera.

Les astronautes passent beaucoup de temps dans les simulateurs du CSM et du module lunaire mais reçoivent également, entre autres, des cours d’astronomie pour la navigation astronomique, de géologie pour les préparer à l’identification des roches lunaires et de photographie. Ils passent de nombreuses heures de vol sur des avions d’entraînement à réaction T-38 pour maintenir leur compétence de pilote (3 astronautes du groupe 3 se tueront en s’entraînant sur T-38). Ils sont impliqués très en amont dans le processus de conception et de mise au point des vaisseaux habités. Enfin, on leur demande de consacrer une partie de leur temps à des tâches de relations publiques qui se traduisent par des tournées dans les entreprises qui participent au projet. Deke Slayton joue un rôle officieux mais effectif de chef des astronautes en sélectionnant les équipages de chaque mission et défendant le point de vue des astronautes durant l’élaboration du projet et des missions.

Les véhicules spatiaux Apollo sont initialement conçus pour donner une autonomie complète à l’équipage en cas de coupure des communications avec le centre de contrôle à Terre. Cette autonomie procurée par les programmes du système de navigation et de pilotage sera dans les faits fortement réduite lorsque les procédures suivies par les missions Apollo seront figées : c’est le contrôle au sol à Houston qui fournira les principaux paramètres tels que la position du vaisseau spatial ainsi que le vecteur de la poussée avant chaque allumage des moteurs. Houston dispose au moment des premiers vols vers la Lune de moyens de calcul plus puissants et, grâce à la télémesure, connaît parfaitement la position des vaisseaux et leur trajectoire. Une fois une phase de vol engagée, c’est toutefois à l’ordinateur de bord d’appliquer les corrections nécessaires en se basant sur ses capteurs et ses capacités de calcul. Par ailleurs, l’ordinateur joue un rôle essentiel pour le contrôle des moteurs (fonction autopilote) et gère de nombreux sous-systèmes, ce qui lui vaut le surnom de quatrième homme de l’équipage. Sans l’ordinateur, les astronautes n’auraient pu poser le module lunaire sur la Lune car lui seul pouvait optimiser suffisamment la consommation de carburant pour se contenter des faibles marges disponibles.

La NASA est, dès le lancement du projet, très sensible aux problèmes de fiabilité. L’envoi d’astronautes sur le sol lunaire est une entreprise beaucoup plus risquée que les vols spatiaux autour de la Terre. Pour les missions en orbite terrestre, en cas d’incident grave, le retour est assuré relativement facilement par une brève poussée des rétrofusées. Par contre, une fois que le vaisseau a quitté l’orbite terrestre, un retour des astronautes sur Terre nécessite que les principaux sous-systèmes ne connaissent aucune défaillance. De manière assez empirique, la NASA avait déterminé que les composants du vaisseau devaient permettre d’atteindre une probabilité de succès de mission de 99 % tandis que la probabilité de perte de l’équipage devait être inférieure à 0,1 % en ne tenant pas compte des micro-météorites et des rayons cosmiques dont les effets étaient mal connus à l’époque. L’architecture des sous-systèmes et la qualité des composants élémentaires des véhicules et du lanceur devaient donc respecter ces objectifs.

Des choix techniques garantissant une grande fiabilité sont retenus sur le module lunaire comme sur le module de commande et de service. Les ergols liquides utilisés par les moteurs sont hypergoliques, c’est-à-dire qu’ils s’enflamment spontanément quand ils sont mis en contact et ne sont pas à la merci d’un système d’allumage défaillant. Leur mise sous pression est effectuée classiquement grâce à de l’hélium supprimant le recours à une fragile turbopompe. Pour parvenir au taux de fiabilité visé sur les autres sous-systèmes, la NASA envisage d’abord de donner aux astronautes la possibilité de réparer les composants défaillants. Mais ce choix suppose de former les astronautes à des systèmes nombreux et complexes, d’emporter des outils et des pièces de rechange et de rendre accessibles les composants à réparer, ce qui les rend vulnérables à l’humidité et à la contamination. La NASA renonce à cette solution en 1964 et décide d’intégrer dans la conception du vaisseau des solutions de contournement permettant de pallier toute anomalie affectant un sous-système critique.

En cas de panne, des systèmes de secours prennent le relais dans un mode plus ou moins dégradé. Ainsi, le système de navigation du module lunaire (ordinateur et système inertiel) est doublé par un système de secours développé par un autre constructeur pour éviter qu’une même faille logicielle mette en panne les deux systèmes. Les quatre groupes de moteurs de contrôle d’attitude sont regroupés par paires indépendantes, chacune d’entre elles pouvant couvrir le besoin en mode dégradé. Le système de régulation thermique est doublé. Les circuits d’alimentation électrique sont également doublés. L’antenne de télécommunications en bande S peut être remplacée par deux antennes plus petites en cas de défaillance. Il n’y a néanmoins pas de parade à une panne de moteur : seuls des tests poussés avec un maximum de réalisme peuvent permettre d’atteindre le taux de fiabilité attendu. Des solutions techniques conservatrices mais éprouvées sont dans certains cas retenues. C’est le cas de l’énergie électrique sur le module lunaire (choix des batteries), des systèmes pyrotechniques (choix de systèmes existants standardisés et éprouvés) ainsi que l’électronique de bord (les circuits intégrés, bien qu’acceptés dans les ordinateurs, ne sont pas retenus pour le reste de l’électronique).

Selon Neil Armstrong, les responsables du projet avaient calculé qu’il y aurait environ 1 000 anomalies à chaque mission Apollo (fusée, CSM et LEM), chiffre extrapolé du nombre de composants et du taux de fiabilité exigé des constructeurs. Il y en aura en fait en moyenne 150, ce qu’Armstrong attribue à l’implication exceptionnellement forte des personnes ayant travaillé sur le projet.

Depuis Spoutnik 1, les dirigeants de l’Union Soviétique et les responsables du programme spatial soviétique avaient toujours fait en sorte de maintenir leur avance sur le programme américain. Il ne faisait aucun doute dans l’esprit des dirigeants américains comme dans celui de l’opinion publique que l’URSS allait lancer son propre programme de vol habité vers la Lune et tenter de réussir avant les États-Unis pour conserver le prestige associé à leur domination durant la première phase de la course à l’espace. Néanmoins, après une déclaration publique en 1961 d’un dirigeant soviétique semblant relever le défi, aucune information officielle ne filtrera plus sur l’existence d’un programme lunaire habité soviétique au point de susciter le doute sur son existence chez certains représentants du congrès américain qui ont commencé, pour cette raison, à contester le budget alloué au programme Apollo à compter de 1963. Cependant, pour les dirigeants de la NASA, la menace d’une réussite soviétique a exercé une pression constante sur le calendrier du programme Apollo : la décision de lancer la mission circumlunaire Apollo 8, alors que le vaisseau spatial Apollo n’était pas complètement qualifié, constituait une certaine prise de risque, qui avait été largement motivée par la crainte de se faire devancer par les Soviétiques. Certains indices ont contribué par la suite à diminuer la pression sur les décideurs de la NASA dans la dernière ligne droite qui a précédé le lancement d’Apollo 11. Au cours des années 1970, aucune information n’a filtré sur la réalité du programme soviétique et dans l’atmosphère de désenchantement qui a suivi la fin du programme Apollo, le célèbre journaliste américain Walter Cronkite a annoncé gravement à son public que l’argent dépensé pour celui-ci avait été gaspillé, car “les Russes n’avaient jamais été dans la course”. Ce n’est qu’avec la glasnost à la fin des années 1980 que commenceront à paraître quelques informations sur le sujet et il a fallu attendre la chute de l’URSS pour que la réalité du programme lunaire soviétique soit reconnue par les dirigeants russes.

À compter du début des années 1960, le programme spatial habité soviétique, si performant jusque-là, tourne à la confusion. Sergueï Korolev, à l’origine des succès les plus éclatants de l’astronautique soviétique, commence à concevoir à cette époque la fusée géante N-1 pour laquelle il réclame le développement de moteurs cryogéniques performants (c’est-à-dire utilisant de l’hydrogène comme ceux en cours de développement chez les Américains) mais se heurte au refus de Valentin Glouchko qui possède un monopole sur la fabrication des moteurs-fusées. Aucun programme lunaire n’est lancé en 1961 car les responsables soviétiques sont persuadés que la NASA court à l’échec. Le premier secrétaire du PCUS Nikita Khrouchtchev demande en juin 1961 à son protégé Vladimir Tchelomeï, rival de Korolev, de développer un lanceur, le Proton et un vaisseau LK-1 (LK pour Lounnyï korabl’ – Лунный корабль – vaisseau lunaire) en vue d’un vol habité circumlunaire. Korolev riposte en proposant une mission de débarquement lunaire basée sur un vaisseau concurrent, le Soyouz (Союз), apte à des rendez-vous en orbite et un module d’atterrissage L3. Constatant les progrès américains, Khrouchtchev décide finalement le 3 août 1964, avec 3 ans de retard, de lancer les équipes soviétiques dans la course à la Lune : les programmes Proton (Прото́н) / Zond (Зонд, “sonde”) de survol de la Lune par une sonde inhabitée et N1-L3 de débarquement d’un cosmonaute sur la Lune de Korolev reçoivent alors le feu vert du Politburo. Toutefois, le limogeage de Khrouchtchev, remplacé par Léonid Brejnev à la tête du Parti communiste de l’URSS en octobre de la même année, se traduit par de nouveaux atermoiements et des problèmes dans la répartition des ressources budgétaires entre les deux programmes.

Gravement handicapé par la mort de Korolev en 1966 et par l’insuffisance des moyens financiers, le développement de la fusée N-1 rencontre des problèmes majeurs (4 vols, 4 échecs en 1969-1971) qui conduisent à son abandon le 2 mai 1974. C’est la fin des ambitions lunaires de l’URSS. Le lanceur Proton comme le vaisseau Soyouz après des débuts laborieux jouent aujourd’hui un rôle central dans le programme spatial russe.

Les principaux composants du programme Apollo sont la famille de lanceurs Saturn ainsi que les deux vaisseaux habités : le CSM et le module lunaire. Pour le séjour sur la Lune, un véhicule est développé ainsi qu’un ensemble d’instruments scientifiques, l’ALSEP.

Trois types de lanceurs sont développés dans le cadre du programme Apollo : Saturn I qui va permettre de confirmer la maîtrise du mélange LOX/LH2, Saturn IB utilisé pour les premiers tests du vaisseau Apollo en orbite terrestre et enfin, le lanceur lourd Saturn V dont les performances exceptionnelles et jamais dépassées depuis, permettront les missions lunaires.

Les débuts de la famille de lanceurs Saturn sont antérieurs au programme Apollo et à la création de la NASA. Début 1957, le Département de la Défense (DOD) américain identifie un besoin pour un lanceur lourd permettant de placer en orbite des satellites de reconnaissance et de télécommunications pesant jusqu’à 18 tonnes. À cette époque, les lanceurs américains les plus puissants en cours de développement peuvent tout au plus lancer 1,5 tonne en orbite basse car ils dérivent de missiles balistiques beaucoup plus légers que leurs homologues soviétiques. En 1957, Wernher von Braun et son équipe d’ingénieurs, venus comme lui d’Allemagne, travaillent à la mise au point des missiles intercontinentaux Redstone et Jupiter au sein de l’Army Ballistic Missile Agency (ABMA), un service de l’Armée de Terre situé à Huntsville (Alabama). Cette dernière lui demande de concevoir un lanceur permettant de répondre à la demande du DOD. Von Braun propose un engin, qu’il baptise Super-Jupiter, dont le premier étage, constitué de 8 étages Redstone regroupés en fagot autour d’un étage Jupiter, fournit les 680 tonnes de poussée nécessaires pour lancer les satellites lourds. La course à l’espace, qui débute fin 1957, décide le DOD, après examen de projets concurrents, à financer en août 1958 le développement de ce nouveau premier étage rebaptisé Juno V puis finalement Saturn (la planète située au-delà de Jupiter). Le lanceur utilise, à la demande du DOD, 8 moteurs-fusées H-1 simple évolution du propulseur utilisé sur la fusée Jupiter, ce qui doit permettre une mise en service rapide.

Durant l’été 1958, la NASA, qui vient tout juste d’être créée, identifie le lanceur comme un composant clé de son programme spatial. Mais début 1959, le Département de la Défense décide d’arrêter ce programme coûteux dont les objectifs sont désormais couverts par d’autres lanceurs en développement. La NASA obtient le transfert en son sein du projet et des équipes de von Braun fin 1959 ; celui-ci est effectif au printemps 1960 et la nouvelle entité de la NASA prend le nom de Centre de vol spatial Marshall (George C. Marshall Space Flight Center MSFC).

La question des étages supérieurs du lanceur était jusque-là restée en suspens : l’utilisation d’étages de fusée existants, trop peu puissants et d’un diamètre trop faible, n’était pas satisfaisante. Fin 1959, un comité de la NASA travaille sur l’architecture des futurs lanceurs de la NASA. Son animateur, Abe Silverstein, responsable du centre de recherche Lewis et partisan de la propulsion par des moteurs utilisant le couple hydrogène/oxygène en cours d’expérimentation sur la fusée Atlas-Centaur, réussit à convaincre un von Braun réticent d’en doter les étages supérieurs de la fusée Saturn. Le comité identifie dans son rapport final six configurations de lanceur de puissance croissante (codés A1 à C3) permettant de répondre aux objectifs de la NASA tout en procédant à une mise au point progressive du modèle le plus puissant. Le centre Marshall étudie en parallèle à l’époque un lanceur hors normes capable d’envoyer une mission vers la Lune : cette fusée baptisée Nova, est dotée d’un premier étage fournissant 5 300 tonnes de poussée et est capable de lancer 81,6 tonnes sur une trajectoire interplanétaire.

Lorsque le président Kennedy accède au pouvoir début 1961, les configurations du lanceur Saturn sont toujours en cours de discussion, reflétant l’incertitude sur les missions futures du lanceur. Toutefois, dès juillet 1960, Rocketdyne, sélectionné par la NASA, avait démarré les études sur le moteur J-2 consommant hydrogène et oxygène et d’une poussée de 89 tonnes retenu pour propulser les étages supérieurs. Le même motoriste travaillait depuis 1956, initialement à la demande de l’armée de l’Air, sur l’énorme moteur F-1 (677 tonnes de poussée) retenu pour le premier étage. Fin 1961, la configuration du lanceur lourd (C-5 futur Saturn V) est figée : le premier étage est propulsé par cinq F-1, le deuxième étage par cinq J-2 et le troisième par un J-2. L’énorme lanceur peut placer 113 tonnes en orbite basse et envoyer 41 tonnes vers la Lune. Deux modèles moins puissants doivent être utilisés durant la première phase du projet :

  • la C-1 (ou Saturn I), utilisée pour tester des maquettes des vaisseaux Apollo, est constituée d’un premier étage propulsé par huit moteurs H-1 couronné d’un second étage propulsé par six RL-10 ;
  • la C-1B (ou Saturn IB), chargée de qualifier les vaisseaux Apollo sur l’orbite terrestre, est constituée du 1er étage de la S-1 couronné du troisième étage de la C-5.

Fin 1962, le choix du scénario du rendez-vous en orbite lunaire (LOR) confirme le rôle du lanceur Saturn V et entraîne l’arrêt des études sur le lanceur Nova.

Le véhicule spatial Apollo (ou module de commande et de service abrégé en CSM) transporte les astronautes à l’aller et au retour. Pesant plus de 30 tonnes, il est pratiquement dix fois plus lourd que le vaisseau Gemini. La masse supplémentaire (21,5 tonnes) est en grande partie représentée par le moteur et les ergols qui fournissent un delta-v de 2 800 m/s permettant au vaisseau de s’insérer en orbite lunaire puis de quitter cette orbite. Le vaisseau Apollo reprend une disposition inaugurée avec le vaisseau Gemini : un module de commande (CM) abrite l’équipage et un module de service (SM) contient le moteur de propulsion principal, l’essentiel des sources d’énergie ainsi que l’équipement nécessaire à la survie des astronautes. Le module de service est largué juste avant l’atterrissage.

Le module de commande Apollo est la partie dans laquelle les trois astronautes séjournent durant la mission, sauf lorsque deux d’entre eux descendent sur la Lune au moyen du module lunaire. Pesant 6,5 tonnes et de forme conique, sa structure externe comporte une double paroi : une enceinte constituée de tôles et nid d’abeilles à base d’aluminium qui renferme la zone pressurisée et un bouclier thermique qui recouvre la première paroi et dont l’épaisseur varie en fonction de l’exposition durant la rentrée atmosphérique. Le bouclier thermique est réalisé avec un matériau composite constitué de fibres de silice et microbilles de résine, dans une matrice de résine époxy. Ce matériau est inséré dans un nid d’abeille en acier.

L’espace pressurisé représente un volume de 6,5 m³. Les astronautes sont installés sur 3 couchettes côte à côte parallèles au fond du cône et suspendues à des poutrelles partant du plancher et du plafond (la pointe du cône). En position allongée, les astronautes ont en face d’eux, suspendu au plafond, un panneau de commandes large de deux mètres et haut de un mètre présentant les principaux interrupteurs et voyants de contrôles. Les cadrans sont répartis en fonction du rôle de chaque membre d’équipage. Sur les parois latérales se trouvent des baies réservées à la navigation, d’autres panneaux de commande ainsi que des zones de stockage de nourriture et de déchets. Pour la navigation et le pilotage, les astronautes utilisent un télescope et un ordinateur qui exploite les données fournies par une centrale inertielle.

Le vaisseau dispose de deux écoutilles : l’une située à la pointe du cône comporte un tunnel et est utilisée pour passer dans le module lunaire lorsque celui-ci est amarré au vaisseau Apollo. L’autre placée sur la paroi latérale est utilisée à Terre pour pénétrer dans le vaisseau et dans l’espace pour les sorties extra véhiculaires (le vide est alors effectué dans la cabine car il n’y a pas de sas). Les astronautes disposent par ailleurs de 5 hublots pour effectuer des observations et réaliser les manœuvres de rendez-vous avec le module lunaire. Le module de commande dépend pour les principales manœuvres comme pour l’énergie et le support-vie du module de service. Il dispose de 4 grappes de petits moteurs d’orientation permettant les manœuvres lors de la rentrée. Celles-ci s’effectuent en orientant le module en roulis, la capsule ayant une incidence voisine de 25 à 30 degrés par rapport à son axe de symétrie. Cette incidence est obtenue par balourd statique de construction.

Le module de service (SM ou “Service Module” en anglais) est un cylindre d’aluminium non pressurisé de 5 mètres de long et 3,9 mètres de diamètre pesant 24 tonnes. Il est accouplé à la base du module de commande et la longue tuyère du moteur-fusée principal de 9 tonnes de poussée en dépasse de 2,5 mètres. Le module est organisé autour d’un cylindre central qui contient les réservoirs d’hélium servant à pressuriser les réservoirs d’ergols principaux ainsi que la partie haute du moteur principal. Autour de cette partie centrale, l’espace est découpé en six secteurs en forme de parts de gâteau. Quatre de ces secteurs abritent les réservoirs d’ergols (18,5 tonnes). Un secteur contient 3 piles à combustibles qui fournissent la puissance électrique et en sous-produit l’eau ainsi que les réservoirs d’hydrogène et d’oxygène qui les alimentent. L’oxygène est également utilisé pour renouveler l’atmosphère de la cabine. Un secteur reçoit des équipements qui ont varié en fonction des missions : appareils scientifiques, petit satellite, caméras, réservoir d’oxygène supplémentaire. Le module de service contient également les radiateurs qui dissipent l’excédent de chaleur du système électrique et qui régulent la température de la cabine. Quatre grappes de petits moteurs de contrôles d’attitude sont disposées sur le pourtour du cylindre. Une antenne comportant 5 petites paraboles, assurant les communications à grande distance, est déployée une fois le vaisseau lancé.

La tour de sauvetage est un dispositif destiné à éloigner le vaisseau spatial du lanceur Saturn V si celui-ci subit une défaillance durant les premières phases du vol. Le recours à des sièges éjectables, utilisé sur le vaisseau spatial Gemini, est exclu compte tenu du diamètre de la boule de feu que créerait l’explosion de la fusée Saturn V. La tour de sauvetage est constituée d’un propulseur à poudre situé au bout d’un treillis métallique lui-même perché au sommet du vaisseau Apollo. En cas d’incident, le moteur-fusée de la tour arrache le vaisseau de la fusée tandis qu’un petit propulseur l’écarte de la trajectoire de la fusée. La tour est alors larguée et le vaisseau entame sa descente en suivant une séquence similaire à celle d’un retour sur Terre. Si le lancement se déroule sans problème, la tour est éjectée lorsque le deuxième étage de la fusée Saturn est mis à feu.

Le module lunaire comporte deux étages : un étage de descente permet d’atterrir sur la Lune et sert par ailleurs de plate-forme de lancement au deuxième étage, l’étage de remontée, qui ramène les astronautes au vaisseau Apollo en orbite à la fin de leur séjour sur la Lune. La structure du module lunaire est, pour l’essentiel, réalisée avec un alliage d’aluminium choisi pour sa légèreté. Les pièces sont généralement soudées entre elles mais parfois également rivetées.

Le corps de l’étage de descente, qui pèse plus de 10 tonnes, a la forme d’une boîte octogonale d’un diamètre de 4,12 mètres et d’une hauteur de 1,65 mètre. Sa structure, constituée de deux paires de panneaux parallèles assemblés en croix, délimite cinq compartiments carrés (dont un central) et quatre compartiments triangulaires. La fonction principale de l’étage de descente est d’amener le LEM sur la Lune. À cet effet, l’étage dispose d’un moteur fusée à la fois orientable et à poussée variable. La modulation de la poussée permet d’optimiser la trajectoire de descente mais surtout de poser en douceur le LEM qui s’est fortement allégé en consommant ses ergols. Le comburant, du peroxyde d’azote (5 tonnes), et le carburant, de l’aérozine 50 (3 tonnes), sont stockés dans quatre réservoirs placés dans les compartiments carrés situés aux quatre coins de la structure. Le moteur se trouve dans le compartiment carré central. Le deuxième rôle de l’étage de descente est de transporter tous les équipements et consommables qui peuvent être abandonnés sur la Lune à la fin du séjour, ce qui permet de limiter le poids de l’étage de remontée.

L’étage de remontée pèse environ 4,5 tonnes. Sa forme complexe, qui résulte d’une optimisation de l’espace occupé, lui donne l’allure d’une tête d’insecte. Il est essentiellement composé de la cabine pressurisée qui héberge deux astronautes dans un volume de 4,5 m³ et du moteur de remontée avec ses réservoirs d’ergols. La partie avant de la cabine pressurisée occupe la plus grande partie d’un cylindre de 2,34 mètres de diamètre et de 1,07 mètre de profondeur. C’est là que se tient l’équipage lorsqu’il n’est pas en excursion sur la Lune. Le pilote (à gauche face à l’avant) et le commandant de bord sont debout, tenus par des harnais qui les maintiennent en place en impesanteur et durant les phases d’accélération. Sur la cloison avant, chaque astronaute a devant lui un petit hublot triangulaire (0,18 m²) incliné vers le bas, qui lui permet d’observer le sol lunaire avec un bon angle de vision, ainsi que les principales commandes de vol et cadrans de contrôle regroupés par panneaux généralement dédiés à un sous-système. Les commandes et contrôles communs sont placés entre les deux astronautes (par exemple la console d’accès à l’ordinateur de navigation), certaines commandes sont doublées (commandes pilotant l’orientation et la poussée des moteurs), les autres commandes sont réparties en fonction des tâches assignées à chaque astronaute. Les panneaux de commandes et coupe-circuit se prolongent sur les parois latérales situées de part et d’autre des astronautes.

Le pilote a au-dessus de sa tête un petit hublot (0,07 m²) qui lui permet de contrôler la manœuvre de rendez-vous avec le module de commande. L’arrière de la cabine pressurisée est beaucoup plus exigu (1,37 × 1,42 m pour 1,52 m de haut) : son plancher est plus haut de 48 cm et, de plus, encombré par un capot recouvrant le sommet du moteur de remontée. Les parois latérales sont occupées par les rangements et à gauche, par une partie du système de contrôle environnemental. Au plafond se trouve l’écoutille utilisée pour passer dans le Module de Commande derrière laquelle se trouve un tunnel court (80 cm de diamètre pour 46 cm de long) comportant un système de verrouillage utilisé pour solidariser les deux vaisseaux. Les forces en jeu au moment de l’accostage qui pourraient déformer le tunnel sont amorties par des poutres qui les répercutent sur toute la structure.

Le LEM ne dispose pas de sas, qui aurait ajouté trop de poids. Pour descendre sur le sol lunaire, les astronautes font le vide dans la cabine et, à leur retour, ils pressurisent la cabine avec les réserves d’oxygène. Pour descendre, ils se glissent dans l’écoutille : celle-ci donne sur une petite plate-forme horizontale qui débouche sur l’échelle dont les barreaux sont situés de part et d’autre d’une des jambes de l’étage de descente.

Pour remplir la mission lunaire, la NASA a dû concevoir plusieurs instruments scientifiques, équipements et véhicules destinés à être mis en œuvre sur le sol lunaire. Les principaux développements sont :

  • le rover lunaire, utilisé à partir de la mission Apollo 15, est un véhicule rustique tous-terrains à propulsion électrique, alimenté par des batteries. Pouvant atteindre la modeste vitesse de 14 km/h, il permet de porter le rayon d’action des astronautes de quelques centaines de mètres à une dizaine de kilomètres et dispose d’une capacité d’emport de 490 kg ;
  • l’ALSEP est un ensemble d’instruments scientifiques installé par les astronautes près de chaque site d’atterrissage à partir d’Apollo 12. Alimenté en énergie électrique par un générateur thermoélectrique à radioisotope (RTG) il comporte de quatre à sept instruments scientifiques dont la composition a varié selon les missions : sismomètre actif ou passif, spectromètre de masse, réflecteur laser, gravimètre, détecteur de poussière, etc. Ces instruments ont fourni en continu, jusqu’à leur arrêt en 1977, des informations sur l’atmosphère, le sol et le sous-sol lunaire : sismicité, vent solaire, température, composition de l’atmosphère, champ magnétique, etc ;
  • les combinaisons spatiales (modèle Apollo A7L) portées par les astronautes, d’une masse de 111 kg avec le système de survie, furent spécialement conçues pour les longues excursions sur le sol lunaire (plus de 7 heures pour certaines sorties des équipages d’Apollo 15, 16 et 17) au cours desquelles les astronautes devaient se déplacer dans un environnement particulièrement hostile – températures extrêmes, micro-météorites, poussière lunaire – tout en effectuant de nombreux travaux nécessitant une certaine flexibilité.

Les six missions lunaires Apollo ont été programmées pour que le module lunaire atterrisse au tout début du jour lunaire (qui dure 28 jours terrestres). Les astronautes bénéficient ainsi d’une lumière rasante pour le repérage du terrain à l’atterrissage (entre 10 et 15° d’élévation au-dessus de l’horizon selon les missions) et de températures relativement modérées : la température au sol passe progressivement de 0 à 130 °C entre le lever du Soleil et le moment où le Soleil culmine au bout de 177 heures terrestres. Compte tenu de ces conditions, pour chaque lieu d’atterrissage, la fenêtre de lancement de la fusée Saturn était réduite à 1 jour par mois pour un site donné.

Le site retenu est toujours situé sur la face visible de la Terre pour que les communications entre le vaisseau et la Terre ne soient pas interrompues ; il n’est pas trop éloigné de la bande équatoriale de la Lune pour limiter la consommation de carburant que nécessiterait un déport du vaisseau vers des latitudes plus élevées.

La fusée décolle systématiquement depuis le Pad 39 du centre spatial Kennedy. Le lancement des 3 000 tonnes de la fusée est particulièrement spectaculaire : les 5 moteurs du premier étage sont allumés simultanément consommant 15 tonnes de carburant chaque seconde puis la fusée, qui est retenue par des pinces, est lâchée dès que les ordinateurs ont vérifié que la poussée des moteurs a atteint sa puissance nominale. La fusée s’élève d’abord très lentement, mettant près de 10 secondes à se dégager de la tour de lancement. La séparation du premier étage S1-C intervient 2 minutes et demie après le lancement à une altitude de 56 km alors que la fusée a atteint une vitesse de Mach 8 (10 000 km/h). Peu après, les moteurs-fusées du deuxième étage S-II s’allument : la jupe inter-étages se détache et la tour de sauvetage est éjectée car le vaisseau spatial est suffisamment haut pour pouvoir retomber sans son aide en cas d’interruption de la mission. Le deuxième étage est à son tour largué alors que la fusée atteint une vitesse de 24 680 km/h et une altitude de 185 km. Le troisième étage S-IVB est alors mis à contribution durant 140 secondes pour placer l’ensemble de la fusée restante sur une orbite circulaire de 180 km onze minutes et demie après le décollage.

Une fois placés en orbite basse, les vaisseaux Apollo (LEM et modules de Commande et de Service) ainsi que le troisième étage de la fusée effectuent un tour et demi autour de la Terre puis le moteur du troisième étage est rallumé pour injecter l’ensemble sur une orbite de transfert vers la Lune. L’injection se traduit par une augmentation de la vitesse de 3 040 m/s (10 000 km/h). Environ une demi-heure après la fin de la poussée, le Module de Commande et de Service (CSM) se détache du reste du train spatial puis pivote de 180° pour venir repêcher le LEM dans son carénage. Après avoir vérifié l’arrimage des deux vaisseaux et pressurisé le LEM, les astronautes déclenchent par pyrotechnie la détente de ressorts situés dans le carénage du LEM : ceux-ci écartent le LEM et le CSM du troisième étage de la fusée Saturn à une vitesse d’environ 30 cm/s. Le troisième étage va alors entamer une trajectoire divergente qui, selon les missions le place en orbite autour du Soleil ou l’envoie s’écraser sur la Lune.

Durant le trajet de 70 heures vers la Lune, des corrections peuvent être apportées à la trajectoire du CSM et du LEM pour optimiser la consommation finale de propergols. Initialement, le déroulement d’une mission Apollo prévoyait une quantité relativement importante de carburant pour ces manœuvres. À l’usage, à peine 5 % de cette quantité sera consommée grâce à la précision de la navigation. Le train spatial est mis en rotation lente pour limiter l’échauffement des vaisseaux en réduisant la durée de l’exposition continue au Soleil.

Une fois arrivé à proximité de la Lune, le moteur du module de commande est allumé pour placer les vaisseaux en orbite en les freinant. Si ce freinage n’est pas réalisé, la trajectoire permet aux vaisseaux de revenir se placer en orbite terrestre après avoir fait le tour de la Lune sans utiliser leurs moteurs. Cette disposition sauvera d’ailleurs la mission Apollo 13. Un peu plus tard, le moteur du CSM est utilisé une deuxième fois pour placer les deux vaisseaux sur une orbite circulaire de 110 km d’altitude.

La descente sur la Lune repose en grande partie sur le système de guidage, navigation et contrôle (PGNCS : Primary Guidance and Control System) piloté par l’ordinateur embarqué (LGC). Celui-ci va d’une part, déterminer périodiquement la position et la trajectoire réelle du vaisseau en utilisant d’abord la centrale inertielle puis le radar d’atterrissage (fonction de navigation), et d’autre part, calculer la trajectoire à suivre en utilisant ses programmes et piloter, en fonction de tous ces éléments, la poussée et l’orientation des moteurs (fonction de guidage). Le pilote du LEM peut toutefois corriger l’altitude en cours à tout moment et, dans la dernière phase, reprendre complètement la main sur les commandes des moteurs. Mais seul le système de navigation et de pilotage permet, en optimisant trajectoire et consommation des ressources, de poser le LEM avant d’avoir épuisé tout le carburant.

L’abaissement de l’orbite est désignée par l’acronyme DOI (Descent Orbit Insertion) dans la terminologie NASA.

L’objectif de cette phase est d’abaisser l’altitude du LEM de 110 km à 15 km au-dessus du sol lunaire. À cet effet, son orbite circulaire est transformée en une orbite elliptique de 15 km sur 110 km. Cette phase permet de réduire la distance à parcourir jusqu’au sol lunaire à un faible coût en propergols (elle ne nécessite qu’une brève impulsion du moteur). La limite des 15 km a été retenue pour éviter que la trajectoire finale ne s’approche trop du relief.

Deux des trois astronautes de l’équipage prennent place dans le Module Lunaire pour descendre sur la Lune. Ils initialisent le système de navigation avant d’entamer la descente vers la Lune. Le LEM et le CSM se séparent avant que le moteur ne soit mis en marche (jusqu’à Apollo 12). Le changement d’orbite est initié lorsque le vaisseau spatial se situe aux antipodes (à une demi-orbite) du point où démarrera la phase suivante. Une fois que la distance entre le LEM et le module de commande est suffisante (une centaine de mètres), une petite accélération est d’abord imprimée par les moteurs contrôlant l’attitude pour plaquer le carburant du moteur de descente contre les vannes de distribution puis le moteur de descente est allumé brièvement pour freiner le LEM d’environ25 m/s (90 km/h).

À partir d’Apollo 14, pour économiser les propergols de l’étage de descente, c’est le moteur du Module de Commande et de Service qui est sollicité pour abaisser l’orbite. Le CSM accompagne donc le LEM dans son orbite elliptique et s’en sépare avant que la descente propulsée ne démarre.

La descente propulsée est caractérisée par une action continue du moteur de descente. Elle démarre lorsque le LEM a atteint le point le plus bas de son orbite elliptique. Elle se décompose elle-même en 3 phases : la phase de freinage, la phase d’approche et la phase d’atterrissage.

La phase de freinage vise à réduire la vitesse du vaisseau de la manière la plus efficace possible : celle-ci va passer de 1 695 m/s (6 000 km/h) à 150 m/s (550 km/h). Le moteur est allumé à 10 % de sa puissance durant 26 secondes, le temps que le moteur s’aligne grâce à son cardan sur le centre de gravité du vaisseau, puis il est poussé au maximum de sa puissance. Le module lunaire qui au début de la trajectoire est pratiquement parallèle au sol va progressivement s’incliner tandis que sa vitesse de descente nulle au départ augmente jusqu’à 45 m/s en fin de phase. Lorsque le LEM se trouve à une altitude inférieure à 12-13 km, le radar d’atterrissage accroche le sol et se met à fournir des informations (altitude, vitesse de déplacement) qui vont permettre de vérifier que la trajectoire est correcte : jusqu’alors celle-ci était extrapolée uniquement à partir de l’accélération mesurée par la centrale à inertie. Une différence trop importante entre les données fournies par le radar et la trajectoire visée ou le non fonctionnement du radar sont des motifs d’interruption de la mission.

La phase d’approche démarre à 7 km du site visé alors que LEM est à une altitude de 700 mètres. Elle doit permettre au pilote de repérer la zone d’atterrissage et de choisir le lieu précis (dégagé) où il souhaite atterrir. Son point de départ est désigné sous le terme de “porte haute” (“high gate”), expression empruntée à l’aéronautique.

Le module lunaire est progressivement redressé en position verticale fournissant au pilote une meilleure vision du terrain. Celui-ci peut ainsi localiser le point d’atterrissage auquel conduit la trajectoire grâce à une échelle gravée sur son hublot graduée en degrés (Landing Point Designator, LPD) : l’ordinateur fournit à la demande l’angle sous lequel l’astronaute peut voir le lieu d’atterrissage sur cette échelle. Si celui-ci juge que le terrain n’est pas propice à un atterrissage ou qu’il ne correspond pas au lieu prévu, il peut alors corriger l’angle d’approche en agissant sur les commandes de vol par incrément de 0,5° dans le sens vertical ou 2° en latéral.

Lorsque le module lunaire est descendu à une altitude de 150 mètres ce qui le place théoriquement à une distance de 700 mètres du lieu visé (point désigné sous le terme de low gate), démarre la phase d’atterrissage. Si la trajectoire a été convenablement suivie, les vitesses horizontale et verticale sont respectivement alors de 66 km/h et 18 km/h. La procédure prévoit que le pilote prenne la main pour amener le module lunaire au sol mais il peut, s’il le souhaite, laisser faire l’ordinateur de bord qui dispose d’un programme de pilotage pour cette dernière partie du vol. En prenant en compte les différents aléas (phase de repérage allongée de deux minutes, modification de la cible de dernière minute de 500 mètres pour éviter un relief, mauvaise combustion finale, jauge de propergol pessimiste), le pilote dispose d’une marge de 32 secondes pour poser le LEM avant l’épuisement des ergols. La dernière partie de la phase est un vol stationnaire à la manière d’un hélicoptère qui permet à la fois d’annuler toutes les composantes de vitesse mais également de mieux repérer les lieux. Des sondes situées sous les semelles du train d’atterrissage prennent contact avec le sol lunaire lorsque l’altitude est inférieure à 1,3 mètre et transmettent l’information au pilote. Celui-ci doit alors couper le moteur de descente pour éviter que le LEM ne rebondisse ou ne se renverse (la tuyère touche presque le sol).

Le séjour sur la Lune est rythmé par les sorties extra-véhiculaires : une unique sortie pour Apollo 11 mais jusqu’à trois sorties pour les dernières missions. Avant chaque sortie, les astronautes doivent faire le plein en eau et oxygène de leur système de survie portable puis enfiler leur tenue. Ils font ensuite le vide avant d’ouvrir l’écoutille qui donne accès à l’échelle.

Les outils et les instruments scientifiques sont sortis des baies de stockage de l’étage de descente puis sont déployés non loin du LEM ou à plus grande distance. À partir d’Apollo 14, les astronautes disposent d’une brouette puis dans le cadre des vols suivants du rover lunaire qui leur permet de s’éloigner d’une dizaine de kilomètres du LEM en transportant de lourdes charges. Le rover occupe une baie entière du module lunaire ; il est stocké en position repliée sur une palette que les astronautes abaissent pour libérer le véhicule. Le rover est déployé par un système de ressorts et de câbles agissant via des poulies et actionnés par les astronautes.

Avant de quitter la Lune, les échantillons géologiques placés dans des conteneurs sont hissés jusqu’à l’étage de remontée grâce à un palan. Le matériel qui n’est plus nécessaire (survie portable, appareils photos, etc.) est abandonné pour alléger au maximum l’étage de remontée.

La phase de remontée doit permettre au LEM de rejoindre le module de commande resté en orbite. Cet objectif est atteint en 2 temps : l’étage du LEM décolle du sol lunaire pour se mettre en orbite basse puis à l’aide de poussées ponctuelles du moteur-fusée, il rejoint le module de commande.

Avant le décollage, la position précise du LEM au sol est entrée dans l’ordinateur afin de déterminer la meilleure trajectoire. L’instant du départ est calculé de manière à optimiser la trajectoire de rendez-vous avec le module de Commande. L’étage de descente reste au sol et sert de plate-forme de lancement. La séparation des deux étages est déclenchée avant le décollage par de petites charges pyrotechniques qui sectionnent les quatre points solidarisant les deux étages ainsi que les câbles et tuyauteries.

Le Module Lunaire suit d’abord une trajectoire verticale jusqu’à une altitude d’environ 75 mètres pour se dégager du relief lunaire puis s’incline progressivement pour rejoindre finalement à l’horizontale le périlune (point bas) d’une orbite elliptique de 15 km sur 67 km.

Un rendez-vous en orbite lunaire est alors effectué entre le CSM (piloté par le troisième membre d’équipage, le seul de la mission à ne pas aller sur la Lune) et le LEM en orbite lunaire. Après que les pierres lunaires ont été transférées, le LEM est libéré et lancé sur une trajectoire qui l’amènera à s’écraser sur la Lune. Le vaisseau spatial peut alors entamer son retour vers la Terre. Apollo 16 et Apollo 17 resteront en orbite une journée de plus pour réaliser des expériences scientifiques et larguer un petit satellite scientifique de 36 kg.

Pour quitter l’orbite lunaire et placer le vaisseau spatial sur la trajectoire de retour vers la Terre, le moteur du module de commande et de service est sollicité durant deux minutes et demie après avoir soigneusement orienté le vaisseau ; il fournit un delta-v d’environ 1 000 m/s qui doit permettre au vaisseau de rejoindre l’orbite terrestre. C’est l’un des moments critiques de la mission car une défaillance du moteur ou une mauvaise précision dans l’orientation condamnerait les astronautes. Le moteur est allumé alors que le vaisseau se situe sur la face située à l’opposé de la Terre de manière à ce que la nouvelle trajectoire, une orbite de transfert fortement elliptique, frôle la surface de la Terre à 40 km d’altitude dans la position qu’elle occupera à l’arrivée du vaisseau. Le trajet de retour dure environ trois jours mais peut être un peu raccourci en optant pour une trajectoire plus tendue. Peu après l’injection sur le trajet de retour (trans-Earth Injection, TEI), une sortie extravéhiculaire est effectuée pour récupérer les films photographiques des caméras placés dans le module de service qui doit être largué avant l’entrée dans l’atmosphère terrestre.

De petites corrections sont effectuées au cours du trajet pour optimiser l’angle d’entrée dans l’atmosphère et le point de chute. Au fur et à mesure que le vaisseau se rapproche de la Terre, la vitesse du vaisseau, qui était tombée à 850 m/s à la limite de l’influence des champs de gravité de la Terre et de la Lune, s’accroît jusqu’à atteindre 11 km/s lorsque le vaisseau pénètre dans les couches denses de l’atmosphère ; celles-ci font sentir leur influence à compter de 120 km d’altitude. Peu avant de pénétrer dans l’atmosphère, le module de service du vaisseau est largué au moyen de systèmes pyrotechniques, emportant avec lui le moteur principal et la majorité des réserves d’oxygène et d’électricité. La rentrée dans l’atmosphère se fait sous un angle très précis fixé à 6,5° avec une tolérance de 1°. Si l’angle de pénétration est trop important, le bouclier thermique qui est porté normalement à une température de3 000 °C durant la rentrée dans l’atmosphère, subit une température supérieure à celle pour laquelle il est conçu et la décélération est plus importante ; ces deux phénomènes pouvant entraîner la mort de l’équipage. Avec un angle inférieur, le vaisseau spatial peut rebondir sur la couche atmosphérique et repartir sur une longue trajectoire elliptique condamnant son équipage incapable de manœuvrer et ne disposant de très peu de réserves d’air.

Après une phase de décélération qui atteint 4 g, le vaisseau a perdu sa vitesse horizontale et descend pratiquement à la verticale. À 7 000 mètres d’altitude, la protection située à l’extrémité conique du vaisseau est éjectée et deux petits parachutes se déploient pour stabiliser la cabine et faire chuter sa vitesse de 480 à 280 km/h. À 3 000 mètres, trois petits parachutes pilotes sont déployés latéralement par des mortiers pour extraire les trois parachutes principaux en évitant qu’ils s’emmêlent. Le vaisseau percute la surface de l’océan à une vitesse de 35 km/h. Les parachutes sont immédiatement largués et trois ballonnets se gonflent de manière à éviter que le vaisseau reste la pointe sous l’eau. Une flottille comprenant un porte-avions ou un porte-hélicoptères est positionnée à l’avance sur la zone où doit amerrir le module de commande. Des avions sont chargés de localiser le point de chute tandis que des hélicoptères amènent sur place des plongeurs qui, montés sur des embarcations légères, récupèrent les astronautes et placent des élingues sur le vaisseau pour qu’il puisse être hissé sur le pont du porte-aéronefs.

Aucun vol orbital américain n’avait encore eu lieu au lancement du programme Apollo. Le seul vol du programme Mercury – ce programme avait débuté en 1959 – avait eu lieu 3 semaines avant le discours du président Kennedy et a été un simple vol balistique faute de disposer d’une fusée suffisamment puissante. Il fallut attendre la mission Mercury-Atlas 6 du 20 février 1962 pour que John Glenn devienne le premier astronaute américain à boucler une orbite autour de la Terre. Trois autres vols habités ont eu lieu en 1962 et en 1963.

À l’issue du programme Mercury, des aspects importants du vol spatial, qui devaient être mis en application pour les vols lunaires, n’étaient toujours pas maîtrisés alors qu’il n’était pas possible de les tester au sol. Les dirigeants de la NASA ont lancé un programme destiné à acquérir ces techniques sans attendre la mise au point du vaisseau très sophistiqué de la mission lunaire : le programme Gemini devait remplir trois objectifs :

  • maîtriser les techniques de localisation, manœuvre et rendez-vous spatial ;
  • mettre au point les techniques permettant de travailler dans l’espace au cours de sorties extra-véhiculaires ;
  • étudier les conséquences de l’apesanteur sur la physiologie humaine au cours de vols de longue durée.

Le vaisseau spatial Gemini, qui devait initialement être une simple version améliorée de la capsule Mercury, s’est transformé au fur et à mesure de sa conception en un vaisseau complètement différent de 3,5 tonnes (contre environ une tonne pour le vaisseau Mercury), capable de voler avec deux astronautes durant deux semaines. Le vaisseau était lancé par une fusée Titan II, missile de l’armée de l’air américaine reconverti en lanceur. Le programme rencontra des problèmes de mise au point. Le lanceur souffrait d’effet pogo, les piles à combustible utilisées pour la première fois fuyaient et la tentative de mise au point d’une aile volante pour faire atterrir la capsule sur le sol ferme a échoué. Tous ces déboires gonflèrent le coût du programme de 350 millions de dollars à 1 milliard de dollars. Toutefois, fin 1963, tout était rentré dans l’ordre et deux vols sans équipage ont pu avoir lieu en 1964 et début 1965. Le premier vol habité Gemini 3 emporta les astronautes Virgil Grissom et John Young le 23 mars 1965. Au cours de la mission suivante, l’astronaute Edward White a réalisé la première sortie dans l’espace américaine. Huit autres missions, émaillées d’incidents sans conséquence, se sont échelonnées jusqu’en novembre 1966 : elles ont permis de mettre au point les techniques de rendez-vous spatial et d’amarrage, de réaliser des vols de longue durée (Gemini 7 est resté près de 14 jours en orbite) et d’effectuer de nombreuses autres expériences.

Parallèlement au programme Apollo, la NASA lance plusieurs programmes pour affiner sa connaissance du milieu spatial et du terrain lunaire. Ces informations sont nécessaires pour la conception des engins spatiaux et préparer les atterrissages. En 1965, trois satellites Pegasus sont placés en orbite par une fusée Saturn I pour évaluer le danger représenté par les micrométéorites ; les résultats seront utilisés pour dimensionner la protection des vaisseaux Apollo. Les sondes Ranger (1961–1965), après une longue série d’échecs, ramènent à compter de fin 1964, une série de photos de bonne qualité de la surface lunaire qui permettent d’identifier des sites propices à l’atterrissage.

Le programme Lunar Orbiter, composé de cinq sondes qui sont placées en orbite autour de la Lune en 1966–1967, complète ce travail : une couverture photographique de 99 % du sol lunaire est réalisée, la fréquence des micrométéorites dans la banlieue lunaire est déterminée et l’intensité du rayonnement cosmique est mesurée. Le programme permet également de valider le fonctionnement du réseau de télémesure. Les mesures effectuées indiquent que le champ gravitationnel lunaire est beaucoup moins homogène que celui de la Terre rendant dangereuses les orbites à basse altitude. Le phénomène, sous-estimé par la suite, réduira à 10 km l’altitude de l’orbite du Lem d’Apollo 15 dont l’équipage était endormi, alors que la limite de sécurité avait été fixée à 15 km pour disposer d’une marge suffisante par rapport aux reliefs. Le 2 juin 1966, la sonde Surveyor 1 effectue le premier atterrissage en douceur sur la Lune fournissant des informations précieuses et rassurantes sur la consistance du sol lunaire (le sol est relativement ferme) ce qui permet de dimensionner le train d’atterrissage du module lunaire.

La fusée Saturn I (ou Saturn C-1) avait été conçue alors que le cahier des charges du programme lunaire n’était pas encore figé. Sa capacité d’emport s’avéra finalement trop faible même pour remplir les objectifs des premières phases du programme. Néanmoins, dix des douze fusées commandées furent construites et lancées entre le 27 octobre 1961 et le 30 juillet 1965, dont six avec l’ensemble des étages. Aucun des composants de cette fusée n’a été réutilisé dans la suite du programme. Après cinq vols consacrés à la mise au point de la fusée (missions SA-1, SA-2, SA-3, SA-4, SA-5), Saturn I a été utilisée pour lancer deux maquettes du vaisseau Apollo (missions A-101, A-102) et placer trois satellites Pegasus en orbite (missions A-103, A-104, A-105).

Les vols de la fusée Saturn IB ont permis la mise au point du troisième étage de la fusée Saturn V (l’étage IVB dont le moteur consommait de l’hydrogène) et d’effectuer les premiers tests du vaisseau spatial Apollo :

  • AS-201 (rétrospectivement et officieusement Apollo 1a) (), mission non habitée, premier essai du lanceur Saturn IB. C’est un vol purement balistique culminant à 450 km (sans mise en orbite) qui emporte un véritable vaisseau Apollo et non une maquette. Il permet de tester avec succès l’étage IVB qui sera réutilisé sur la fusée Saturn V, le moteur principal du vaisseau Apollo qui est mis à feu pour porter la vitesse à 8 km/s, ainsi que le bouclier thermique de la capsule Apollo durant la phase de rentrée atmosphérique ;
  • AS-203 (rétrospectivement et officieusement Apollo 3) (), est une mission non habitée dont l’objectif est d’étudier le comportement de l’hydrogène et de l’oxygène liquide dans les réservoirs une fois la fusée placée en orbite. La mission est un succès ;
  • AS-202 (rétrospectivement et officieusement Apollo 2) () est une mission non habitée. La fusée Saturn 1-B, comme dans le premier vol AS-201, lance sa charge utile sur une longue trajectoire balistique qui lui fait parcourir les trois-quarts du tour de la Terre. La mission doit permettre de tester le comportement du vaisseau Apollo et de la tour de sauvetage fournis dans des versions complètement opérationnelles. Le vaisseau Apollo dispose pour la première fois de ses programmes de pilotage et de navigation et de ses piles à combustible. Le moteur du vaisseau Apollo est allumé à quatre reprises. La rentrée dans l’atmosphère à 8 500 m/s permet de tester le comportement du bouclier thermique soumis à un échauffement prolongé.

Le , alors que l’équipage du premier vol habité Apollo 1 (initialement AS-204) qui doit décoller un mois plus tard effectue une répétition au sol en conditions réelles, un incendie se déclare dans le vaisseau Apollo (CMS) dans lequel les 3 astronautes se trouvent sanglés sur leurs couchettes. Les flammes font rage dans l’atmosphère confinée composée uniquement d’oxygène ; Virgil Grissom, Edward White et Roger Chaffee décèdent asphyxiés sans être parvenus à ouvrir l’écoutille dont le mécanisme complexe ne permettait pas une ouverture rapide. Le vaisseau avait rencontré de nombreux problèmes de mise au point avant l’accident. Le déclenchement de l’incendie sera attribué, sans être clairement identifié, à un court-circuit dû à un fil électrique dénudé. L’enquête révèle l’utilisation de nombreux matériaux inflammables dans la cabine et beaucoup de négligences dans le câblage électrique et la plomberie. Le déclenchement et l’extension de l’incendie avait été favorisé par l’atmosphère d’oxygène pur (dépourvu d’azote) donc extrêmement inflammable, une solution qui était déjà celle des vaisseaux Mercury et Gemini.

De nombreuses modifications ont été apportées pour que la cabine du vaisseau offre une meilleure résistance au feu. L’écoutille a été modifiée pour pouvoir être ouverte en moins de 10 secondes. Une atmosphère d’azote et d’oxygène était utilisée durant la première phase du vol. L’ensemble du programme Apollo subit une revue qui a entraîné la modification de nombreux composants. Les exigences de qualité et les procédures de test ont été renforcées. Tout le programme subit un décalage de 21 mois accroissant la pression sur les équipes : la fin de la décennie approchait. Par ailleurs, tout le monde s’inquiétait de l’avancement du programme soviétique, même si aucune information officielle ne filtrait de l’Union soviétique.

Les déboires du vaisseau spatial Apollo ont permis au programme de développement de la fusée géante Saturn V de rattraper son retard. Celle-ci avait en effet rencontré de nombreux problèmes touchant en particulier le deuxième étage (le S-II qui est encore aujourd’hui le plus gros étage à hydrogène jamais conçu) : excès de poids, phénomènes de vibration (effet pogo), etc.

  • Apollo 4 (), mission non habitée, premier essai du lanceur Saturn V.

La mission Apollo 4 est le premier vol du lanceur géant Saturn V. À cette occasion, un vaisseau Apollo effectue pour la première fois une rentrée atmosphérique qui restera la rentrée terrestre la plus rapide jusqu’à Stardust. Afin de recueillir un maximum d’informations sur le comportement de la fusée, 4098 capteurs sont installés. Le premier lancement de Saturn V est un succès complet.

  • Apollo 5 (), mission non habitée, essai du lanceur Saturn IB et du module lunaire.

La mission Apollo 5 doit permettre de tester le module lunaire dans des conditions de vol réelles, c’est-à-dire dans le vide spatial. Il s’agit en particulier de vérifier le fonctionnement de ses moteurs d’ascension et de descente, ainsi que sa capacité à effectuer les manœuvres de séparation prévues. La mission est également destinée à tester une manœuvre d’urgence consistant à mettre à feu les moteurs d’ascension sans avoir largué l’étage de descente (manœuvre d’interruption de la phase d’atterrissage). Malgré quelques caprices de l’électronique du module lunaire, le fonctionnement de celui-ci peut être validé par ce vol.

  • Apollo 6 () deuxième vol de Saturn V, mission non habitée.

La mission Apollo 6 est une répétition plus complète d’Apollo 4. Le test est peu satisfaisant : deux des moteurs J-2 du 2ème étage cessent prématurément de fonctionner ce qui ne peut être compensé que par une durée de fonctionnement prolongée des autres moteurs de l’étage. Alors que la fusée est sur son orbite de parking, l’unique moteur J-2 du 3ème étage refuse de se rallumer pour simuler l’injection sur une trajectoire lunaire. En sollicitant le moteur du vaisseau Apollo, les équipes de la NASA parviennent malgré tout à effectuer les tests attendus. Malgré ces péripéties, la NASA a estimé que désormais la fusée Saturn V et les véhicules Apollo pouvaient embarquer des équipages en toute sécurité.

Le premier vol habité n’a lieu qu’en octobre 1968 mais les missions destinées à valider le fonctionnement des différents composants du programme et à effectuer une répétition presque complète d’une mission lunaire, se succèdent rapidement. Quatre missions préparatoires se déroulent sans anomalie majeure sur une période de 7 mois.

  • Apollo 7 ( – ).

Apollo 7 est la première mission habitée du programme Apollo. Son but est de valider les modifications effectuées sur le vaisseau spatial à la suite de l’incendie d’Apollo 1 (CMS version 2). Une fusée Saturn 1 B est utilisée car le module lunaire ne fait pas partie de l’expédition. Au cours de son séjour en orbite, l’équipage répète les manœuvres qui seront effectuées lors des missions lunaires. Après avoir quitté l’orbite terrestre et effectué leur rentrée dans l’atmosphère, la capsule et son équipage sont récupérés sans incident dans l’Atlantique. C’était la première mission américaine à envoyer une équipe de trois hommes dans l’espace et à diffuser des images pour la télévision. La fusée Saturn IB ne sera plus utilisée par la suite dans le cadre du programme d’exploration lunaire.

  • Apollo 8 ( – )

La mission Apollo 8 est le premier vol habité à quitter l’orbite terrestre. À ce stade d’avancement du programme, il s’agit d’une mission risquée car une défaillance du moteur du vaisseau Apollo au moment de sa mise en orbite lunaire ou de son injection sur la trajectoire de retour aurait pu être fatale à l’équipage d’autant que le module lunaire a été remplacé par une maquette. Mais les dirigeants de la NASA redoutent un coup d’éclat des Soviétiques pour la fin de l’année et décident de courir le risque. Les astronautes font au total 10 révolutions autour de la Lune. Durant ce vol, ils réalisent de nombreux clichés de la Lune dont le premier lever de Terre. Apollo 8 permet pour la première fois à un homme d’observer directement la “face cachée” de la Lune. L’une des tâches assignées à l’équipage consistait à effectuer une reconnaissance photographique de la surface lunaire, notamment de la mer de la Tranquillité où devait se poser Apollo 11.

  • Apollo 9 ( – )

Apollo 9 constitue le premier essai en vol de l’ensemble des équipements prévus pour une mission lunaire : fusée Saturn V, module lunaire et vaisseau Apollo. Pour la première fois, on baptise le vaisseau Apollo (Gumdrop) et le Lem (Spider), une décision destinée à faciliter les communications avec le sol lorsque les deux vaisseaux ont un équipage. Les astronautes effectuent toutes les manœuvres de la mission lunaire tout en restant en orbite terrestre. Le module lunaire simule un atterrissage puis réalise le premier rendez-vous réel avec le vaisseau Apollo. Les astronautes effectuent également une sortie extravéhiculaire de 56 minutes pour simuler le transfert d’équipage du module lunaire au vaisseau Apollo en passant par l’extérieur (manœuvre de secours mise en œuvre en cas d’amarrage infructueux entre les deux vaisseaux). En outre, ils testent l’utilisation du module lunaire comme “canot de sauvetage” dans la perspective d’une défaillance du vaisseau Apollo ; c’est cette procédure qui sera utilisée avec succès par l’équipage d’Apollo 13.

  • Apollo 10 ( – )

Les dirigeants de la NASA ont envisagé que cette mission soit celle du premier atterrissage sur le sol lunaire, car l’ensemble des véhicules et des manœuvres avait été testé sans qu’aucun problème majeur n’ait été détecté. Mais, dans la mesure où les Soviétiques ne semblaient pas préparer de mission d’éclat, ils ont préféré opter pour une dernière répétition au réalisme encore plus poussé. Peu après avoir quitté son orbite terrestre basse, le vaisseau Apollo, surnommé “Charlie Brown”, a exécuté la manœuvre d’amarrage au LEM. Après s’être séparé du troisième étage de Saturn V, il a effectué une rotation à 180° puis a arrimé son nez au sommet du module lunaire avant de l’extraire de son carénage. Une fois le train spatial placé en orbite autour de la Lune, le module lunaire, surnommé “Snoopy”, a entamé la descente vers le sol lunaire qui a été interrompue à 15,6 km de la surface. Après avoir largué l’étage de descente non sans quelques difficultés dues à une erreur de procédure, le LEM a réalisé un rendez-vous avec le vaisseau Apollo. La mission a reproduit les principales étapes du vol final, à la fois dans l’espace et au sol. Young était aux commandes du vaisseau Apollo alors que Stafford et Cernan occupaient le module lunaire.

Les sept missions suivantes lancées entre 1969 et 1972 ont toutes pour objectifs de poser un équipage en différents points de la Lune, présentant un intérêt géologique. Apollo 11 est la première mission à remplir l’objectif fixé par le président Kennedy. Apollo 12 est une mission sans histoire, contrairement à Apollo 13 qui, à la suite d’une explosion dans le module de service, frôle la catastrophe et doit renoncer à se poser sur la Lune. La NASA a modifié le modèle de module lunaire emporté par les missions à partir d’Apollo 15 pour répondre aux attentes des scientifiques : le séjour sur la Lune est prolongé grâce à des réserves de consommables plus importantes. Le module lunaire plus lourd transporte le rover lunaire qui accroît le rayon d’action des astronautes durant leurs sorties.

  • Apollo 11 ( – )

Le 21 juillet 1969, les astronautes Neil Armstrong et Buzz Aldrin, après un atterrissage mouvementé dans la mer de la Tranquillité, font leurs premiers pas sur la Lune. Armstrong, qui est le premier à sortir du module lunaire, prononce sa phrase devenue depuis célèbre “C’est un petit pas pour un homme, un bond de géant pour l’Humanité” – “That’s one small step for [a] man; one giant leap for mankind”. L’objectif principal de la mission était de réussir l’atterrissage. L’équipage installe une version simplifiée de la station scientifique ALSEP et la sortie extravéhiculaire, au cours de laquelle une vingtaine de kilogrammes de roches lunaires sont collectées, ne dure que 2 heures 30. Après un séjour de 21 heures 38 sur le sol lunaire, le module lunaire décolle sans encombre. À leur arrivée sur Terre, l’équipage et les échantillons lunaires sont placés en quarantaine durant 21 jours pour éviter une éventuelle contamination terrestre par des virus extraterrestres, une procédure exigée par les scientifiques qui sera abandonnée à partir d’Apollo 15.

  • Apollo 12 ( – )

32 secondes après son décollage, la fusée Saturn V est frappée par la foudre, entraînant une perte temporaire de la puissance électrique. Le module lunaire fait un atterrissage de précision dans l’Océan des Tempêtes à 180 m de la sonde spatiale Surveyor 3 dont certains éléments seront ramenés à Terre pour évaluer l’incidence de leur séjour prolongé sur le sol lunaire et dans le vide. Charles Conrad et Alan Bean installent une station scientifique automatisée ALSEP, mènent à bien des observations géologiques et prennent de nouvelles photographies de la Lune et de sa surface. Ils recueillent également 34,1 kg d’échantillons du sol lunaire. Durant ce séjour sur le sol lunaire de 31 heures 31 minutes, les deux astronautes réalisent deux excursions d’un total de 7 heures 45 minutes parcourant ainsi 2 km à pied et s’éloignent jusqu’à 470 m du module lunaire. De nombreuses améliorations ont été réalisées en particulier dans la précision de l’atterrissage par rapport à la mission Apollo 11. Les résultats sont si positifs qu’on projette d’envoyer Apollo 13 dans une zone plus accidentée.

  • Apollo 13 ( – )

La mission est interrompue à la suite de l’explosion d’un réservoir d’oxygène liquide situé dans le module de service d’Odyssey durant le transit de la Terre à la Lune, 55 heures 54 minutes après son envol. Le CSM est pratiquement hors service sans oxygène ni puissance électrique. Les astronautes n’osent pas se servir de son moteur pour manœuvrer. Ils se réfugient dans le module lunaire Aquarius dont ils utilisent les ressources et le moteur pour les manœuvres de correction de trajectoire qui permettent d’optimiser la trajectoire de retour vers la Terre. Heureusement, la trajectoire de transit Terre-Lune a été calculée pour que, en l’absence de manœuvre, le train spatial puisse revenir vers la Terre après avoir fait le tour de la Lune. Les astronautes réintègrent le vaisseau Odyssey immédiatement avant l’arrivée à Terre, larguent le module lunaire qui a servi de radeau de sauvetage avant d’effectuer une rentrée dans l’atmosphère sans encombre. L’explication de l’accident est déterminée sans ambiguïté : durant une vidange du réservoir d’oxygène, 15 jours avant le décollage, la gaine des fils électriques qui le traversent a fondu et ceux-ci se sont retrouvés entièrement dénudés. Lorsque Jack Swigert a actionné le brassage du réservoir, des étincelles ont jailli et déclenché son explosion.

  • Apollo 14 ( – ).

Le début du transit vers la Lune est marqué par un incident qui manque d’interrompre la mission : l’équipage doit s’y reprendre à cinq reprises pour parvenir à amarrer le module CSM au module lunaire. Apollo 14 atterrit dans la région accidentée de Fra Mauro qui était l’objectif initial d’Apollo 13. Un des moments marquants de la mission se produit lorsque Alan Shepard, qui est le premier (et le seul) des astronautes du programme Mercury à marcher sur la Lune, tire 2 balles de golf à l’aide d’un club emmené clandestinement. Shepard et Edgar Mitchell ont passé plus de 9 heures au cours de 2 sorties à explorer une zone où la NASA pensait trouver des roches figurant parmi les plus anciennes. Ils ont ramené 42,9 kg d’échantillons rocheux.

  • Apollo 15 ( – )

Apollo 15 est la première mission à emporter un module lunaire alourdi grâce, entre autres, à l’optimisation du lanceur Saturn V. Le poids supplémentaire est principalement constitué par le rover lunaire et des consommables (oxygène et puissance électrique) embarqués à bord du module lunaire Apollo qui permettent d’allonger le séjour sur la Lune de 35 heures à 67 heures. David Scott et James Irwin passent 2 jours et 18 heures sur le sol lunaire. Au cours de leurs trois sorties extravéhiculaires, qui durent en tout 18 heures 36 minutes, ils parcourent plus de 28,2 km à proximité du mont Hadley grâce au rover lunaire. Parmi les 76 kg de roches prélevées, les astronautes trouvent ce qu’on pense être un cristallin de la croûte lunaire originelle vieille d’environ 4,6 milliards d’années. Un petit satellite emportant trois expériences scientifiques est largué alors que le CMS est en orbite autour de la Lune. Worden fait une sortie spatiale de 16 minutes dans l’espace alors que le vaisseau Apollo se trouve encore à 315 000 km de la Terre. Au retour, durant la descente vers le sol terrestre, un des trois parachutes se met en torche sans dommage pour l’équipage.

  • Apollo 16 ( – )

Apollo 16 est la première mission à se poser sur les hauts-plateaux lunaires. John Watts Young et Charles Duke passent 20 heures 14 minutes sur la Lune, installant plusieurs expériences, parcourant 26,7 km à l’aide du rover lunaire et recueillant 95,4 kg d’échantillons rocheux. L’équipage largue un mini-satellite destiné à étudier les particules et le champ magnétique solaire.

  • Apollo 17 ( – )

Apollo 17 est la dernière mission sur la Lune. L’astronaute Eugene Cernan et son compagnon Harrison Schmitt, un géologue civil américain, le seul astronaute scientifique du programme Apollo à avoir volé, sont les derniers hommes à marcher sur la Lune : ils y passent 22 h 05 min, parcourant grâce à la Jeep lunaire 36 km dans la région des monts Taurus, près du cratère de Littrow. C’est l’équipage qui ramène le plus de roches lunaires (111 kg) et effectue la plus longue sortie extra-véhiculaire.

La NASA se préoccupe dès 1963 de la suite à donner au programme Apollo. En 1965, l’agence crée une structure affectée aux missions postérieures à celles déjà planifiées regroupées sous l’appellation Apollo Applications Program (AAP). La NASA propose plusieurs types de mission dont le lancement en orbite d’une station spatiale, des séjours prolongés sur la Lune mettant en œuvre plusieurs nouveaux modules dérivés du LEM, une mission habitée vers Mars, le survol de Vénus par une mission habitée, etc. Mais les objectifs scientifiques trop vagues ne réussissent pas à convaincre le Congrès américain beaucoup moins motivé par les programmes spatiaux “post-Apollo”. Par ailleurs, les priorités des États-Unis ont changé : les dispositifs sociaux mis en place par le président Lyndon Johnson dans le cadre de sa guerre contre la pauvreté (Medicare et Medicaid) et surtout un conflit vietnamien qui s’envenime prélèvent une part croissante du budget. Ce dernier ne consacre aucun fonds à l’AAP pour les années 1966 et 1967. Les budgets votés par la suite ne permettront de financer que le lancement de la station spatiale Skylab réalisée en utilisant un troisième étage de la fusée Saturn V.

En 1970, le programme Apollo lui-même est touché par les réductions budgétaires : la dernière mission planifiée (Apollo 20) est annulée tandis que les vols restants sont étalés jusqu’en 1974. La NASA doit se préparer à se séparer de 50 000 de ses employés et sous-traitants (sur 190 000) tandis que l’on annonce l’arrêt définitif de la fabrication de la fusée Saturn V qui ne survivra donc pas au programme. Un projet de mission habité vers Mars (pour un coût compris entre trois et cinq fois celui du programme Apollo) proposé par un comité d’experts sollicité par le nouveau président républicain Richard Nixon ne reçoit aucun appui ni dans la communauté des scientifiques ni dans l’opinion publique et est rejeté par le Congrès sans débat. Le 20 septembre 1970, le responsable de la NASA, démissionnaire, annonce que les contraintes budgétaires nécessitent de supprimer deux nouvelles missions Apollo 18 et Apollo 19.

L’annulation des missions laisse trois fusées Saturn V inutilisées dont l’une permettra néanmoins de lancer la station spatiale Skylab. Les deux restantes sont aujourd’hui exposées au Johnson Space Center et au centre spatial Kennedy. La station spatiale Skylab est occupée successivement par trois équipages lancés par des fusées Saturn IB et utilisant des vaisseaux Apollo (1973). Une fusée Saturn IB a été utilisée pour le lancement de la mission Apollo-Soyouz qui emportait un vaisseau spatial Apollo (1975). Ce sera la dernière mission à utiliser du matériel développé dans le cadre du programme Apollo. Le coût du programme est évalué à 25,4 milliards de dollars en 1969 (équivalent à 135 milliards de dollars, en 2006).

L’objectif fixé au programme Apollo par le président Kennedy en 1961 est rempli au-delà de toute espérance. L’astronautique américaine a su développer dans un temps record un lanceur d’une puissance inimaginable dix ans auparavant, maîtriser complètement le recours à l’hydrogène pour sa propulsion et réaliser ce qui paraissait, peu de temps auparavant, relever de la science-fiction : amener l’homme sur un autre astre. Malgré le saut technologique, le taux de réussite des lancements des fusées Saturn a été de 100 % et tous les équipages ont pu être ramenés à Terre. Aux yeux du monde entier le programme Apollo est une démonstration magistrale du savoir-faire américain et de sa supériorité sur l’astronautique soviétique qui au même moment accumule les échecs. Pour beaucoup d’Américains cette victoire démontre la supériorité de la société américaine même si cette foi dans leur système est fortement ébranlée à la même époque par l’ampleur de la contestation étudiante liée à la guerre du Viêt Nam et l’agitation sociale qui touche en particulier la minorité noire dans les grandes villes liée avec le mouvement des droits civiques.

Le programme Apollo, lorsqu’il est lancé, répond à des considérations de politique extérieure : l’architecture des missions et la conception des véhicules sont définies sans se soucier de leur pertinence et de leur pérennité du point de vue de la recherche scientifique. Celle-ci est intégrée dans le projet tardivement et avec beaucoup de difficultés. Absorbés par les défis techniques à relever, la NASA et le MSC – ce dernier était particulièrement concerné puisque chargé de la conception des vaisseaux habités et de l’entraînement des astronautes – ont du mal à consacrer des forces à la prise en compte des besoins scientifiques. Enfin, membres de la NASA et scientifiques (ceux-ci étant représentés notamment par le National Academy of Sciences et le Space Science Board) ont tâtonné longtemps pour mettre au point un mode de travail constructif, chacun voulant assumer la conduite des projets. Après avoir lancé les premières études en 1962, le Space Science Board définit au cours de l’été 1965 les points clés à traiter pour les 15 prochaines années dans le domaine de la recherche lunaire. Ce document servira de cahier des charges pour la conception des expériences scientifiques à mettre en œuvre au cours des missions Apollo.

Pour mener des recherches scientifiques sur le terrain, il valait mieux disposer de scientifiques entraînés comme astronautes que de pilotes – le vivier dans lequel avait puisé jusque-là la NASA – formés à la géologie. En 1965, malgré les réticences d’une partie du management, la NASA recrute 6 scientifiques. Seuls deux d’entre eux étaient des pilotes vétérans et les autres durent suivre une formation de pilote de chasseur à réaction. Début 1966, le MSC, après avoir été plusieurs fois relancé par la direction de la NASA, mit en place une structure destinée aux expériences scientifiques permettant d’amorcer le processus de développement des instruments embarqués. Seul le géologue Schmitt aura l’occasion d’aller sur la Lune.

Les missions Apollo ont permis de collecter en tout 382 kg de roches lunaires dans six régions différentes de notre satellite (à comparer aux 336 grammes ramenés sur Terre par les missions soviétiques robotisées du programme Luna à la même époque). Ces roches sont conservées dans un bâtiment construit à cet effet au Centre spatial de Houston. Une organisation est mise en place pour la fourniture de petits échantillons de roches aux scientifiques du monde entier qui en font la demande. Un institut consacré aux sciences planétaires, le Lunar and Planetary Institute, est créé à la même époque à Houston pour faciliter la coopération internationale et centraliser les résultats des études menées. Par ailleurs de nombreuses données scientifiques ont été collectées au cours des missions : mesures effectuées par les astronautes durant leur séjour sur le sol lunaire, photographies prises depuis l’orbite lunaire, relevés effectués par les instruments logés dans une des baies du module de service à partir de la mission Apollo 15. Enfin, les stations scientifiques ALSEP, comportant de 3 à 8 instruments et déposées sur le sol lunaire durant les sorties extravéhiculaires, ont transmis leurs mesures aux stations terrestres jusqu’à l’épuisement de leur source d’énergie radioactive en septembre 1977. Les réflecteurs laser qui faisaient partie des ALSEP mais n’ont pas besoin d’une source d’énergie, car complètement passifs, sont encore utilisés de nos jours pour mesurer les variations de distance entre la Terre et la Lune.

Contre toute attente les roches lunaires ramenées comme les observations et les mesures effectuées n’ont pas permis de trancher entre les différents scénarios de formation de la Lune : produit de la collision entre un astre vagabond et la Terre (thèse aujourd’hui privilégiée), capture d’un astre par la Terre, formation en parallèle, etc. En effet, l’interprétation de données issues d’un milieu extraterrestre s’est avérée beaucoup plus difficile que ce que les scientifiques avaient imaginé, car nécessitant entre autres, un gros effort de recherche interdisciplinaire. Les échantillons de roche collectées indiquent une géologie complexe aussi les scientifiques estiment que la Lune est, dans ce domaine, en grande partie inexplorée malgré les 6 expéditions Apollo. Les données collectées par les 4 sismomètres ont permis d’esquisser une modélisation de la structure interne de la Lune : une croûte de 60 km d’épaisseur surmontant une couche homogène et de nature différente de 1 000 km d’épaisseur avec en profondeur un cœur à moitié fondu (1 500 °C) constitué sans doute de silicates. Les altimètres laser d’Apollo 15 et 16 ont confirmé que le centre de gravité de la Lune ne coïncidait pas avec son centre géométrique. Les données géologiques et géochimiques recueillies ont été par contre beaucoup plus difficiles à interpréter et n’ont permis de tirer que des conclusions générales : les échantillons reflètent une composition chimique différente de celle de la Terre avec une proportion plus faible des éléments les plus volatils et plus d’éléments radioactifs que la moyenne cosmique. Trois types de roche semblent prédominer : des basaltes riches en fer dans les mers, des plagioclases ou anorthosites riches en aluminium dans les zones situées en altitude et des basaltes riches en uranium et en thorium avec des concentrations importantes de potassium, terres rares et phosphore (basaltes “KREEP”). Mais pour certains scientifiques de cette époque, ces roches ne reflètent pas la composition du sol de la Lune primordiale sans doute enseveli par le bombardement constant subi par celle-ci depuis plusieurs milliards d’années.

L’impact du programme Apollo et des programmes spatiaux américains contemporains sur l’évolution technologique est indirect et porte sur des domaines bien précis. Il est difficile de distinguer la contribution du programme de celle des projets militaires (missile balistique) qui le précèdent ou l’accompagnent. Si les technologies concernées peuvent être clairement identifiées, il est beaucoup moins facile de mesurer précisément l’incidence du programme spatial sur les progrès constatés.

L’industrie métallurgique, qui doit répondre à des exigences particulièrement sévères (allègement, absence de défaut) et aux contraintes de l’environnement spatial (vide entraînant la sublimation des métaux, vibration, chaleur), crée de nouvelles techniques de soudure, dont le soudage par explosion, pour obtenir des pièces sans défaut. Le recours à l’usinage chimique, qui deviendra plus tard un procédé essentiel pour la fabrication des composants électroniques, est fréquent. Il a fallu mettre au point de nouveaux alliages et recourir à des matériaux composites. Les instruments de mesure installés dans les engins spatiaux ont dû satisfaire des exigences de précision, fiabilité et rapidité beaucoup plus élevées que la norme. L’instrumentation biomédicale est née de la nécessité de contrôler l’état de santé des astronautes en vol. Enfin, les projets de la NASA des années 1960 ont permis d’affiner les techniques de calcul de la fiabilité et de mettre au point un grand nombre de techniques de gestion de projet : PERT, WBS, gestion de la valeur acquise, revue technique, contrôle qualité.

Le programme Apollo a contribué à l’essor de l’informatique : le développement des programmes de navigation et de pilotage des vaisseaux Apollo voit apparaître la scission entre matériel et logiciel. Les méthodes de programmation et de test sont également en partie nées des exigences de fiabilité et de la complexité des logiciels développés pour le programme. Enfin, le projet lance l’utilisation des circuits intégrés qui ont fait leur apparition en 1961. La NASA achète au début du programme 60 % de la production mondiale pour les besoins des ordinateurs des vaisseaux Apollo.

L’ère spatiale débute en plein âge d’or d’une science-fiction américaine inspirée par les réalisations techniques nées de la Seconde Guerre mondiale et incarnée par des écrivains comme Isaac Asimov, Robert Heinlein, Arthur C. Clarke. Leurs œuvres dressent en images saisissantes et crédibles, le portrait d’une civilisation terrestre et plus particulièrement américaine qui s’est étendue aux planètes voisines ou aux étoiles. Des ingénieurs comme le futur concepteur de la Saturn V Wernher von Braun (ce dernier à travers ses contacts avec Walt Disney) contribuent également à populariser l’idée de l’exploration de l’espace par l’homme. Lorsque le programme Apollo est lancé, la rhétorique sous-jacente de la littérature de fiction spatiale (nouvelle frontière, conquête de l’espace) est reprise dans le discours de responsables politiques et de ceux l’agence spatiale. Aiguillés par la NASA, des magazines comme Life, la télévision américaine en pleine expansion, transforment la course à l’espace et le programme Apollo en particulier, en un feuilleton haletant, suivi avec passion par les Américains et dont les astronautes sont les héros. Le film 2001, l’Odyssée de l’espace, réalisé en collaboration étroite avec les spécialistes de l’industrie spatiale et qui sort en 1968, reflète l’idée que se font beaucoup d’un futur spatial qui semble désormais à portée de main.

Lorsque les astronautes d’Apollo 8 effectuent le voyage initial vers la Lune, donnant à des millions de téléspectateurs pour la première fois la possibilité d’apercevoir leur planète plongée dans l’espace, ils sont sans doute nombreux à partager le sentiment qui inspire au poète Archibald MacLeish ce texte intitulé “Riders on Earth together, Brothers in eternal cold” (“Passagers solidaires de la Terre, frères dans le froid éternel”) qui a été imprimé le jour de Noël à la Une du New York Times :

“To see the earth as it truly is, small blue and beautiful in that eternal
Silence where it floats, is to see ourselves as riders on the Earth together,
Brothers on that bright loveliness in the eternal
Cold – brothers who know now they are truly brothers”

“Contempler la Terre telle qu’elle est réellement, petit joyau bleu flottant dans un silence éternel,
C’est réaliser que nous sommes des passagers solidaires de la Terre,
Frères pour l’éternité sur cette beauté multicolore au milieu du froid éternel,
Frères qui réalisent maintenant qu’ils sont vraiment frères”.

Les photos de la Terre prises depuis l’espace lointain par les équipages du programme Apollo frapperont les esprits à l’époque. La plus célèbre de ces photos est La Bille bleue prise par les astronautes d’Apollo 17. D’autres photos, comme celles montrant un lever de Terre au-dessus d’un sol lunaire dépourvu de couleurs ou celles mettant en évidence la minceur de la couche atmosphérique ont fait prendre conscience du caractère unique et fragile de notre planète, le vaisseau Terre. Ces images ont sans doute contribué à l’expansion des mouvements écologiques au cours des décennies suivantes.

Le 20 juillet 1969, 600 millions de téléspectateurs, soit un cinquième de la population mondiale de l’époque, assistent en direct à la télévision aux premiers pas de Neil Armstrong et Buzz Aldrin. Si presque tout le monde s’accorde sur le fait qu’il s’agit d’un événement marquant, il y a toutefois des voix pour s’élever contre le gaspillage d’argent comme certains représentants de la communauté noire américaine, à l’époque en pleine ébullition. L’écrivain de science-fiction Ray Bradbury, qui participe à un débat à la télévision à Londres, durant lequel il se heurte aux critiques émanant, entre autres, de l’activiste politique irlandaise Bernadette Devlin, s’insurge “Au bout de 6 milliards d’années d’évolution, cette nuit, nous avons fait mentir la gravité. Nous avons atteint les étoiles… et vous refusez de fêter cet événement ? Allez au diable !”.

Le mot de Neil Armstrong, “C’est un petit pas…”, a été immédiatement repris et adapté tandis que l’expression “Si on a pu envoyer des hommes sur la Lune, alors on devrait pouvoir…” devint une phrase passe-partout. Mais l’intérêt pour le programme spatial faiblit rapidement. Le déroulement de la mission Apollo 12, pourtant filmé en couleurs contrairement à Apollo 11, a été beaucoup moins suivi. Les commentaires très techniques, hors de portée de l’Américain moyen, l’absence de péripéties banalisaient l’événement. Il a fallu l’accident d’Apollo 13, qui replaçait l’homme au cœur de la mission, pour raviver l’intérêt du public.

Plusieurs films et de nombreux documentaires ont pris pour sujet le programme Apollo. On peut citer notamment Apollo 13, réalisé en 1995 par Ron Howard, qui reconstitue les péripéties du vol Apollo 13. The Dish, réalisé en 2000 par Rob Sitch, est une semi-fiction retraçant l’histoire de la construction d’une station de réception terrestre en Australie qui doit recevoir la première émission télévisuelle émise depuis la Lune par Apollo 11. In the Shadow of the Moon est un documentaire de 2008 constitué à partir de films d’actualités diffusés à l’époque, de documents internes de la NASA et d’interviews de plusieurs astronautes encore en vie.

Au début des années 1970, alors que le programme Apollo touche à sa fin, certains décideurs politiques envisagent l’arrêt des vols habités trop coûteux et aux retombées limitées. La fin de la guerre froide et l’effondrement du programme spatial soviétique a privé le projet habité américain d’une grande partie de ses justifications. Mais Richard Nixon ne veut pas être celui qui a arrêté les missions habitées auxquelles se rattache encore malgré tout une part de prestige. Par ailleurs, si l’opinion publique et la communauté scientifique s’accordent sur la nécessité de réduire le budget spatial en particulier consacré aux vols habités, le président n’est pas insensible au lobbying de l’industrie et aux considérations électorales : la Californie qui concentre une grande partie des emplois de l’astronautique – les effectifs employés par l’industrie aérospatiale en Californie passent de 455 000 à 370 000 personnes entre 1967 et 1970 – est un enjeu important pour les élections à venir. En partie pour répondre aux critiques sur le coût du programme Apollo, la NASA a élaboré à cette époque son projet de navette spatiale qui doit permettre d’abaisser de manière significative le prix du kilogramme placé en orbite par rapport aux lanceurs non réutilisables. Le président Nixon donne son feu vert au programme de la navette spatiale mais celle-ci devra s’inscrire par la suite dans un cadre budgétaire spatial civil en décroissance constante : les sommes allouées à la NASA passent progressivement de 1,7 % du budget total de l’État fédéral en 1970 à 0,7 % en 1986, son point le plus bas. Les espoirs suscités par la navette spatiale seront déçus : on estime en 2008, alors que le programme de la navette est en voie d’achèvement, que chaque vol de la navette spatiale américaine revient à 1,5 milliard de dollars en intégrant les coûts de développement : un coût non concurrentiel par rapport à celui d’un lanceur classique. La souplesse opérationnelle n’est pas non plus au rendez-vous : la cadence de lancement atteint 5 % de celle prévue initialement.

La communauté scientifique américaine tire un bilan négatif du programme Apollo. Les retombées scientifiques du programme sont limitées au regard des sommes investies et la part du programme spatial consacrée à la science (satellites scientifiques, sondes spatiales) a diminué durant les années Apollo. Le phénomène se répétera d’ailleurs au cours des décennies suivantes, les programmes scientifiques de la NASA étant régulièrement victimes soit des dépassements budgétaires des programmes spatiaux habités soit d’arbitrages en leur défaveur. Aussi, l’Académie des Sciences américaine demande à l’époque que l’activité spatiale soit recentrée sur des thèmes scientifiques et ses applications dans le domaine de la météorologie, l’agriculture, l’hydrologie, l’océanographie, etc. Elle s’oppose également au développement de la navette spatiale. La communauté scientifique est aujourd’hui dans son ensemble toujours peu favorable aux missions habitées au-delà de l’orbite basse : en 2004, à la suite de la relance des missions habitées vers la Lune et Mars, le comité chargé du financement de l’astrophysique au sein de l’American Physical Society, s’inquiétait de l’importance des fonds monopolisés par ce type de mission aux objectifs mal cernés au détriment de projets, comme les télescopes spatiaux, qui avaient largement prouvé leur intérêt scientifique.

Après les progrès fulgurants des années 1960 dont le débarquement lunaire constitue l’acmé, le vol spatial habité, contrairement à toutes les prédictions de l’époque, s’est replié durant ses cinquante dernières années sur l’orbite terrestre basse. L’astronaute Gene Cernan, dans son autobiographie publiée en 1999, écrit “Tout se passe comme si le programme Apollo avait vu le jour avant son heure, comme si le président Kennedy avait été chercher une décennie au cœur du XXIème siècle et qu’il avait réussi à l’insérer au début des années 1960”. Pour l’historien américain J.R. McNeill, l’aventure du programme Apollo et de l’exploration spatiale en général pourrait être une impasse condamnée à devenir dans le futur une simple note de bas de page de l’histoire de la civilisation, à moins que des découvertes ne relancent son intérêt ou que renaisse une course au prestige entre des nations disposant de moyens financiers suffisants.

À l’époque du débarquement sur la Lune, il existait déjà une petite minorité d’incrédules qui se recrutait aux États-Unis dans les classes sociales les plus défavorisées, coupées de toute connaissance scientifique, et les minorités. L’audience de la thèse du moon hoax (canular lunaire) s’élargit dans les années 1970 lorsqu’un climat de défiance vis-à-vis des institutions s’installe chez beaucoup d’Américains dans le sillage du scandale du Watergate et de la guerre du Viêt Nam : c’est à cette époque, symbolisée dans les médias par le film Les Trois Jours du Condor, qu’est tourné Capricorn One (1978) qui raconte l’histoire d’un faux débarquement sur Mars mis en scène par la NASA. En 2001, l’émission “Théorie du complot : avons-nous atterri sur la Lune ?”, basée sur des pseudo témoignages scientifiques et diffusée sur la chaîne de télévision Fox rencontre un succès d’audience qui témoigne surtout de l’absence de culture scientifique de ses auditeurs. Malgré ses incohérences évidentes, la théorie du faux débarquement sur la Lune continue à trouver des partisans pour les raisons déjà citées mais sans doute également parce que l’événement est si éloigné de toute expérience personnelle, qu’il dégage pour beaucoup un sentiment d’irréalité.

La stagnation du programme spatial habité américain après les succès du programme Apollo suscite un intense sentiment de frustration chez beaucoup de passionnés d’astronautique. Au moment même où le programme Apollo subit un coup d’arrêt à la fin des années 1960, naissent des associations militant pour un programme spatial habité ambitieux prolongeant l’effort spatial engagé. Selon T.E. Dark, l’apparition de ces mouvements est à mettre en relation avec la crise que subit à la fin des années 1960 l’idée de progrès, une croyance au cœur de la société américaine. L’apparition du mouvement écologique, un scepticisme naissant vis-à-vis des bienfaits de la croissance économique et la crainte d’un déclin culturel américain expliquent principalement cette crise. Promouvoir le programme spatial était un moyen de faire revivre l’idée de progrès sous une autre forme.

L’association la plus connue à l’époque, la L5 Society, préconise la colonisation de l’espace par la création de gigantesques habitats spatiaux au point de Lagrange L5. Elle reçoit l’attention du Congrès américain ainsi que de la NASA. Mais le concept d’habitats spatiaux géants ne dépassera jamais le stade de l’étude théorique, car il nécessite de lancer un million de tonnes en orbite autour de la Terre en 6 ou 10 ans, un objectif qui ne pouvait être atteint que si le coût de la mise en orbite était abaissé à 55 dollars le kg comme envisagé par l’étude de Gerard K. O’Neill et la NASA en 1975-1977. La L5 Society disparait en 1987, victime des désillusions nées de la crise de l’énergie et des déboires de la navette spatiale américaine. En 1998 est fondée la Mars Society qui milite pour la colonisation de Mars. Son créateur, Robert Zubrin, rédige plusieurs ouvrages très documentés sur les moyens de mener une mission habitée sur Mars. The Planetary Society est une association plus ancienne, née en 1980, dont le fondateur le plus connu est Carl Sagan, qui a un ancrage international et compte plus de 100 000 membres. Plus réaliste, elle milite surtout pour l’exploration du système solaire mais a tout de même apporté son soutien au programme de mission habitée vers la “planète rouge” de la Mars Society.

Depuis la mission habitée Apollo 17 de 1972, plus aucun astronaute ne s’est éloigné de plus de quelques centaines de kilomètres de la Terre. Le 20 juillet 1989, pour le 20ème anniversaire de l’atterrissage d’Apollo 11, le président des États-Unis George H. W. Bush lance un programme spatial ambitieux sur 30 ans, le Space Exploration Initiative (SEI), qui doit permettre l’installation d’une base permanente sur la Lune. Mais son coût, l’absence de soutien dans l’opinion publique et les fortes réticences du Congrès font capoter le projet. En 2004, son fils, le président George W. Bush, rend public les objectifs à long terme qu’il souhaite assigner au programme spatial américain alors que l’accident de la navette spatiale Columbia vient de clouer au sol une flotte de navettes spatiales vieillissantes et que le sort de la station spatiale internationale, dont l’achèvement approche, est en suspens. Le projet présidentiel Vision for Space Exploration veut replacer l’Homme au cœur de l’exploration spatiale : le retour d’astronautes sur la Lune est programmé avant 2020 pour une série de missions destinées à préparer une éventuelle présence permanente de l’homme sur le sol lunaire et mettre au point le matériel nécessaire à de futures missions habitées sur Mars fixées à une échéance beaucoup plus lointaine. Cette fois ci, l’opinion comme le Congrès sont favorables au projet : le programme Constellation est alors mis sur pied par la NASA pour répondre aux attentes présidentielles. Il prévoit la construction de deux types de lanceur Ares I et Ares V ainsi que, de manière similaire au programme Apollo, deux vaisseaux habités Altair et Orion. La NASA utilise, en les adaptant, des moteurs-fusées développés pour la fusée Saturn V, les propulseurs à poudre de la navette spatiale ainsi que de nombreuses installations au sol remontant à l’époque du programme Apollo. Mais le programme prend du retard et se heurte à un problème de financement qui selon les plans initiaux, doit s’effectuer sans augmentation substantielle du budget global de la NASA. À la suite de son investiture, le président américain Barack Obama fait expertiser le programme Constellation par la commission Augustine, créée à cet effet le 7 mai 2009. Celle-ci conclut qu’il manque 3 milliards de $ par an pour atteindre les objectifs fixés mais confirme l’intérêt d’une seconde exploration humaine de la Lune comme étape intermédiaire avant une mission habitée vers Mars. Début février 2010 le président Obama annonce l’annulation du programme Constellation qui est confirmée par la suite.

Source : Wikipédia France